SPECIAL REPORTS-LATEST DICHTALTEST GEAR

Radio-Electionicos

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

BUILD

ELECTRONIC PHOTOFLASH 200 Watt-Seconds Bright

DIGITAL VOM'S TODAY \$300 And Less

DIEHTAL GEAR ROUNDUP Everything But The VOM

NEW FTC AUDIO POWER SPECS Will They Work?

BUILD WITH ONE IC 3-Way Function Generator

 40 COSMOS IC PROJECTS Continues In This Issue
PLUS

Annliance 14

EXCLUSIVE TO R-E First Computer Terminal You Build from A Ki

PTS ELIETBOJJSS

Precision Tuner Service

LET US TAKE CARE OF YOUR TUNER PROBLEMS.

Fast 0 hr. Service! We offer you finer, faster.

... THIS IS THE SERVICE WE OFFER:

1. Fastest Service-8 hour-in and out the same day. Overnight transit to one of our strategically located plants.
2. Best Quality-Your customers are satisfied and you are not bothered with returning tuners for rework. PTS uses only ORIGINAL PARTE! No homemade or make-do. inferior merchandise (this is why we charge for major parts!) You get your tuner back in ORIGINAL EQUIPMENT condition.
A. PTS is recommended by more TV Manufacturers than any other tuner company 5. PIS is overhauling more tuners than all other tuner services combined.

VHF. UH
UV-COMBO
$\$ 10.95^{\star}$

Major parts and shipping charged at cost.

Professional Antenna Installers．．．cut yourself in on．．．

Stocking these 9 ECG ${ }^{\text {wr }}$ semiconductors is like having hundreds of solid-state deflection circuit devices on hand.

GTE Sylvania has checked out hundreds of different TV set models to find out what they have in common.

And we've been able to boil down practically all of their deflection circuit needs to just nine parts.

Then, we put together a brand-new cross-reference guide (ECG-212E) that tells you which of the nine units replaces which numbers.

But, we didn't stop at deflection circuits. Our new guide also covers over 75,000 other parts including industrial components as well as all types of home and auto entertainment equipment.

Because we've reduced the number of parts that you have to have on hand, it's easier to keep a complete stock.

And that makes it easier for you to be sure you have the part you want when you want it.

GTE SYLVANIA

Radio－Electronics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
More than 65 years of electronics publishing
NOVEMBER 1974 Vol． 45 Vo． 11

COVER
FEATURE

42 First Computer Terminal You Build From A Kit
R－E Exclusive Report tells how the MITS computer terminal operates and what it does－it＇s complete with MODEM and cassette tape recorder jack． by Thomas Durston

BUILD ONE OF THESE

33 200－Watt－Second Photoflash
Three different versions along with construction details are described．by Jim Gupton

5440 COSMOS Circuits To Build
Part III presents another group of easy－to－build，yet practical，IC projects．by R．M．Marston

100 Build 3－Way IC Function Generator
One IC delivers sine，triangle and square waves． by Robert Colman

45 Digital Multimeters Under $\$ \mathbf{3 0 0}$
TEST INSTRUMENTS

R－E＇s technical editor brings you up－to－date on what＇s available in the $\$ 300$－and－under category and what they will do for you．by Robert F．Scott

50 Digital Instruments For Electronics
There＇s more than DVM＇s that have gone digital．R－E＇s service editor reports on＂the rest．＂by Jack Darr

63 Equipment Report
Two Hewlett－Packard triggered－sweep oscilloscopes．

TELEVISION

69 Service Clinic
R－C networks and different waveforms．by Jack Darr
72 Reader Questions
R－E＇s service editor solves reader problems．
64 Step－By－Step Troubleshooting Charts
Waveform analysis and how to use it．by Stan Prentiss

HI－FI

 STEREO26 Equipment Report
Technics model RS－676US Dolby cassette recorder．
61 The New FTC Audio Power Rules
How good are they？How big are the loopholes？You get the answers here．by Len Feldman

GENERAL ELECTRONICS

4 Looking Ahead
Tomorrow＇s news today．by David Lachenbruch

24 Appliance Clinic
Automatic light switches．by Jack Darr
66 R－E＇s Replacement Transistor Directory
This month＇s installment continues our coverage of replacement transistors．
compiled by Elizabeth and Robert F．Scott

DEPARTMENTS

116	Advertising Index	87	New Literature
108	Books	82	New Products
16	Letters	98	Next Month
6	New \＆Timely	119	Reader Service Card

ON THE COVER

This complete computer terminal is equipped to operate over phone：lines and has an output you can con rect a tape recorder to．Best of all，you build it from a kit．Get all the mletails in the article starting on cagie 42.

DIGITAL MULTIMETERS UNDEV \＄300？ There＇s a heap of them．Here＇s wrapup showing what＇s available and wirat they will do． ．．．sex page 45

Hugo Gernsback（1884－1967）founder
M．Harvey Gernsback
editor－in－chief and publisher
Larry Steckler，CET，editor
Robert F．Scott，W2PWG，CET，
technical editor
Arthur Kleiman，associate editor
Jack Darr，CET，service editor
I．Queen，editorial associate
Leonard Feldman
contributing high－fidelity editor
David Lachenbruch，contributing tor
Barbara Schwartz，editorial assistant
Vincent P．Cicenia，production mainéger
Sarah Martin，production assistant
Harriet I．Matysko，circulation dirrect or Arline R．Bailey，advertising coordinator Advertising Sales Offices，see paje 16

Gover photograph by Walter Herstati
Cover design by Louis G．Rubsamen
Radio－Electronics is indexed in $/ p$－
plied Science \＆Technology index and Readers Guide to Periodis：al Literature．

Radio－Electronics，Published montinly $3 y$ Gerns－ back Publications，Inc．， 200 Park Aver ue South， New York City 10003 ．Phone： $212-717$ tid N, Sec ． ond－class postage paid a New Yor N．Nition additional mailing offices．One－year stbscription rate：U．S．A．，U．S．Dossessions and Canuida，\＄8．75． Pan－American countries，$\$ 10.25$ ．Other countries， $\$ 10.75$ ．Single copies 75 c ．（c） 1974 ty sernsback Publications，Inc．All rights resurvell．Printed in U．S．A．

Subscription Service：Mail all subscription orders， changes，correspondence and Postmaill Notices of undelivered copies（Form 3579）to Radio－ Electronics Subscription Service，Bualder，Colo． 80302.

A stamped self－addressed envelofe must ac－ company all submitted manuscripts andor art－ work or photographs if their rettep s desired should they be rejected．We disclalin any re－ sponsibility for the loss or damage of munuscripts and／or artwork or photographs whie in our possession or otherwise．

Flat TV screen

The long quest for a thinpanel electroluminescent TV screen as a substitute for the cathode ray tube may be nearly over, according to scientists at Japan's Sharp Corp. They claim to have overcome the drawbacks in previous devices-short life and low brightness. Lab samples of Sharp's thin-film panels have been operated for 10,000 hours "without any indication of degradation" and with brightness of more than 60 foot-lamberts at the regular 60-fields-per-second TV scanning rate. Contrast ratio was given as better than 60 to 1.

Sharp's panel, said to be about the thickness of a windowpane, is a three-layer sandwich (electroluminescent layer between two insulating layers) and is driven at a peak voltage of 260 volts ac. The experimental unit is 48×36 mm (about $1.9 \times 1.4 \mathrm{in}$.), has 81 picture elements vertically, 108 horizontally, and is addressed by horizontal and vertical grids. Sharp says production is now feasible and the initial applications probably will be for calcuator and computer display, rather than TV. The device currently is monochrome (orange-yellow), but Sharp is working on a three-color version. Sharp officials are so confident they're on the right track that they predict the first no-tube television set within "the next few years."

Digital watches

The electronic digital watch soon will be the hottest new product on the market, and there are indications that prices will decline as rapidly as those of electronic calculators. Until very recently, LED and liquid-crystal types were selling at $\$ 250$ and up. During the summer, new models came out in the $\$ 200$ range, followed shortly by watches as cheap as $\$ 120$. Next step: \$85. Timex is now marketing
a liquid-crystal quartz wristwatch at that price. Not only are the traditional watch manufacturers in the race, but the calculator manufacturerssuch as Bowmar, Casio and Eiko-are joining in, and before long the makers of IC's are expected to enter the market with their own brand watches, just as they did in the calculator field.

Calculators, meanwhile, are glutting the market. With an oversupply, the calculator industry underwent a severe recession last summer and was counting on the student and Christmas markets to help pull them out. Despite inflation, prices continued to drift downwards, with under$\$ 20$ units no longer unusual and an occasional bargain showing up at less than $\$ 15$.

Audio price probe

Is there illegal price-fixing in the audio components business? Spurred by complaints from dealers, the Federal Trade Commission has launched a nationwide investigation to determine whether brand-name manufacturers and importers are withholding merchandise illegally from dealers who sell below specified minimum prices. The FTC revealed no details of its inquiry, but it's believed to cover not only the traditional audio retailers but mail-order houses which advertise in audio publications and various other discount operations, such as those in large cities which quote discount prices by telephone.

Solid-state sweeps TV

It probably won't come as any surprise that solid-state circuitry is finally overtaking the television industry. In the first half of 1974, nearly 63% of all color sets produced or imported into the United States were solid-state models, as compared to only 36.5% in the first half of 1973. In the 1974 period, more than
83% of all consoles and 54.5% of all portables and table models were solid-state, but solid-state construction accounted for only a little more than 30% of monochrome sets.

Portables and table models continued to increase their share of the color TV market, representing 71% of all sets in the 1974 period, up from 66% in the first half of 1973. The fastest growing picture tube sizes were the new 13-, 15- and 17 -inch categories, at the expense of the 12 -inch-and-under and the 25 -inch sizes. Remote control may be coming into its own, accounting for a record 8.2% of color sets in January-June 1974, up from 4.6% in the same 1973 period.

In black-and-white, the 11 and 12 -inch sizes represented more than one half of the total supply for the first time (it was less than 40% one year earlier), and the monochrome console finally has virtually disappeared, dropping to only 2% of the total.

Tighter UHF rules?

After 22 years of UHF broadcasting, there is a strong feeling among engineers on the FCC staff that new measures are necessary to bring a greater level of equality between UHF and VHF television stations. These could take the form of new regulations aimed at better performance of UHF transmitters or receivers or both. Recent FCC tests of receivers indicate that the performance level of UHF tuners has improved little, if at all, in two decades. The Public Broadcasting System is beginning a series of tests of both transmitters and receivers which could result in recommendations to the FCC for further action to mandate UHF-VHF parity. The all-channel law already resulted in bringing the UHF receiver population close to 100% of TV households. The more recent tunerparity rules make UHF as simple to tune as VHF in cur-
rent-model receivers-if the viewer can locate the UHF signals at all.

Some sentiment is discernable at the FCC for an amendment to the all-channel law to give the Commission the authority to establish UHF tuner performance standards. The FCC currently has the power to fix noise levels only -and it's felt that congressional action would be required to give it greater authority over other performance factors. So far there's no groundswell for further action on UHF, but it could build up in the coming months.

$\$ 31.6$ billion for electronics

The U.S. electronics industry brought in $\$ 31.6$ billion in factory sales last year, according to EIA. The biggest segment was the communications and industrial market, which accounted for $\$ 12.9$ billion, followed by government electronics (military, space, etc.) at $\$ 10.8$ billion. The consumer market accounted for sales of $\$ 6.9$ billion, white replacement parts represented $\$ 920$ million in sales. All segments of the market registered increases in 1973, and total electronics business was up 7.4% from $\$ 29.5$ billion in 1973.

The other matrix

Although most of the publicity in the four-channel record race has gone to the discrete CD-4 (Quadradisc) and SQ matrix systems, another matrix system is now making a major bid. This is the QS system, being pushed by Sansui.

Sansui's catchword is VarioMatrix, which describes a new four-chip decoder circuit that has a three-position switchfor decoding QS discs, SQ discs and synthesizing fourchannel from regular stereo records.

by DAVID LACHENBRUCH
 CONTRIBUTING EDITOR

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS．

REPAIR

VHF Or UHF Any Type \＄9．95． UHF／VHF Combo $\$ 15.00$ ．

In this price all parts are included． Tubes，transistors diodes，and nuvistors are charged extra．

Fast efficient service at our conve－ niently located service centers．This price does not cover mutilated tuners．

All tuners are cleaned ultrasonically， repaired，realigned and air tested．

REPLACE

Universal Replacement（In Canada \＄14 75）
This price buys you a complete new tuner built specifically by SARKES $T_{,} \notin R$－ ZIAN INC．for this purpose．

All shafts have a maximum lengtt of $10^{\prime \prime}$ which can be cut to $11 / 2^{\prime \prime}$

Specify heater type parallel and se＊ies 450 mA or 600 mA ．

CUSTOMIZE

Customized tuners are available at a cost of only $\$ 15.95$ ．（In Canada $\$ 17.95 / \mathbf{1} \leqslant 95$ ）

Send in your original tuner for com parison purposes to：

TUNER SERVICE CORPORATION

Backed by he largest tuner manufacturer in the U．S．－SARKES TARZIAN，Inc．

new extimely

Active Citizens Bander is named "Handicapped American of Year"

H. Keith Russell, Silver Spring, MD, a member of the Montgomery County REACT No. 2348, has been named Handicapped American of the Year by the President's Committee on Employment of the Handicapped, and was awarded the President's Trophy, the nation's highest honor to its handicapped citizens. (REACT-Radio Emergency Associated Radio Teams-is an organization of Citizens Band groups who keep a 24-hour watch on CB channel 9 , give help to motorists in difficulties and assist in emergencies and catastrophes.)

Mr. Russell, who moves about with crutches and long leg braces, works continuously for handicapped peopleespecially in the area of removal of architectural barriers - in addition to his REACT volunteer work. In Montgomery County he was instrumental in helping the passage of special parking privileges for the handicapped, ramping of shopping centers, curb-ramping ordi-

H. Keith Russell
nances, and the removal of discriminatory employment practices.

He is also active in local and national organizations concerned with the removal of such architectural barriers as stairs, narrow doorways, etc., which prevent 10% of the population from moving about freely.

Mr. Russell is chief of the Armed Forces Institute of Pathology Histopath Laboratory of Walter Reed Hospital and has an additional part-time occupation as a musician. He also builds musical instruments and installs automobile hand-controls for a large manufacturer. In addition, he often travels to speak to medical groups about the correct use of medical aids for severely handicapped patients.

Duval Payne and David Robinson win latest Gernsback Award

Duval W. Payne, a home-study student
of the National Technical Schools, Los Angeles, is the most recent winner of the 1974 Hugo Gernsback Scholarship Award, a check for $\$ 125$ given annually to a student in each of eight leading

Duval W. Payne
electronics home-study schools. The Award is in memory of the late Hugo Gernsback, who devoted much of his energy to encouraging young men in the study of electronics.

David B. Robinson

A second prize-an RCA WV-529-A "Service Special" VOM-contributed by RCA for the runner-up in each of the 1974 Award contests, goes to NTS student David B. Robinson.

Mr. Payne, who lives in Pittsburgh, writes: "I am employed at present as foreman of Building Equipment Maintenance for the U.S. Postal Service, which has become so highly automated that they have need for technicians.... The things I have learned are a tremendous asset on my present job, and I also intend doing part-time TV repair."

Mr. Robinson is an auto mechanic,
shop foreman for Daniels Chevrolet in Colorado Springs, CO. He says: "The knowledge gained (in my current Electronics course with NTS) has been of extreme importance in the presently expanding use of electronics in cars. In coming years, I think courses like this should be included in expanded Auto Mechanics courses.'

Radio waves may affect human health

Radio waves may affect the nervous system and behavior, and normal development and growth processes "at lower levels than anticipated in the past," the government Office of Telecommunications Policy stated in a report to Congress. The Office warns, however, that the tentative findings are based on a small number of experiments on a limited number of subjects, and that "casual relationships between the electromagnetic fields and observations are not yet clearly established.'

High concentrations of radio frequency radiation is known to cause adverse biological effects by generating heat in the tissues. The thermal effects are fairly well understood, and it has been fairly well established that power densities of less than 10 mW per cm^{2} are harmless to human beings, as far as their heating effects are concerned.

Less is known of other effects of rf radiation, though they have been suspected to exist for some time, especially with microwaves. In the 1940's, while he was manufacturing microwave diathermy equipment, Lee de Forest suggested a study of "the non-thermal effects of higher radio frequencies." Some effects of radio waves are rather sharply tuned: ants align their antennas parallel to an electromagnetic field at 9 MHz ; emissions at $29-\mathrm{MHz}$ have been used to kill bugs in bread, and radiations at 388MHz have killed monkeys. On the other hand radiation at $21-\mathrm{MHz}$ increases the germination of gladiolus bulbs. These are obviously non-thermal phenomena; effects due to heat would cover wide frequency bands.

Emergency audio transmitter is help for seizure victims

A device for persons who may be liable to heart attacks, epileptic seizure or diabetic coma is now being marketed by a Denver firm.

Called the Emergency Medical instructor, it is a small case that contains a taped message pre-recorded by the patient' \leqslant own physician, telling what is (continued on page 12)

Avoid serious trouble in color TV sets by using the right replacement capacitor！

The next time you replace a dipped tubular in one of the newer color TV sets，don＇t automatically assume you＇re replacing an ordinary every－day film or paper capacitor．If it happens to be a deflec－ tion capacitor used for commutating or S －shaping， you need a polypropylene or polycarbonate film replacement with（1）high a－c current－carrying ca－ pability；（2）close capacitance tolerance；（3）good capacitance stability．The standard replacement

capacitors used in the industry，even our superior Type PS dipped tubulars，just won＇t do the job ．．． and they could cause serious trouble after the set is put back into operation．

Play it safe ．．．dipped tubulars may lock alike on the surface，but there can be a big difference in the film dielectric．Keep a supply of Spraçive Type PP and PM capacitors on hand for those critical situations where ordinary replacements wern＇t work．

SPRAGUE

$\mu \mathrm{F}$＠WVDC	Cap．Tol．	D．$\times \mathrm{L}$ ．	Cat．No．	$\mu \mathrm{F}$＠WVDC	Cap．Tol．	D．$\times \mathrm{L}$ ．	Cat．No．
1.75 ＠ 100	$\pm 5 \%$	． 900×1.000	PM1－MI． 75	． 0039 ＠ 600	$\pm 5 \%$	． $400 \times .800$	Pl＇6－D39S
1．5＠150	$\pm 5 \%$	． $800 \times .937$	PM15－M1．5	.01 $.066 @ 600$ 600	$\pm \begin{aligned} & \pm 5 \% \\ & \pm 5 \%\end{aligned}$	． 500×1.250	Pl＇6－S10S Pl＇6－S66S
． 01 ＠400	$\pm 5 \%$	． $400 \times .750$	PP4－S10	． 075 ＠ 600	$\pm 5 \%$	． 750×1.250	Pl＇S－S75S
． 015 ＠ 400	$\pm 5 \%$	． $450 \times .750$	PP4．S15	． 022 ＠ 800	$\pm 3 \%$	． 600×1.300	P1＇8－S22S
． 033 ＠400	$\pm 5 \%$	． $500 \times .750$	PP4．S33S	． 047 ＠ 800	$\pm 5 \%$	． 700×1.250	P188．S47S
． 06 ＠ 400	$\pm 5 \%$	． 800×1.250	PP4－S60S	． 051 ＠ 800	$\pm 5 \%$	． 800×1.250	P1＇8－S51S
$\begin{aligned} & .081 @ 400 \\ & .2 \end{aligned}$	$\pm 2 \%$ $\pm 5 \%$	$\begin{aligned} & .600 \times 1.300 \\ & .700 \times 1.700 \end{aligned}$	PP4－S81S PP4－P20	． 0018 ＠ 1600	$\pm 5 \%$	． 500×1.300	P1＇16－D18
				． 002 ＠ 1600	$\pm 5 \%$	． 500×1.300	P1＇16－D20
$.0018 @ 600$	\pm	$\begin{aligned} & .400 \times \quad .750 \\ & .400 \times .750 \end{aligned}$	$\begin{aligned} & \text { PP6.D18S } \\ & \text { PP6.D22S } \end{aligned}$	． 0033 ＠ 16000	$\pm 5 \%$ $\pm 5 \%$	$.550 \times 1.300$ $.600 \times 1.300$	PP＇16－D33

> For cross-reference information on close-tolerance polypropylene and polycarbonate film capacitors, showing original part numbers with correct Sprague replacements, ask your Sprague distributor for CrossReference Guide C-873, or write to: Sprague Products Company, 81 Marshall Street, North Adams, Mass. 01247 .

Almost half of the successful TV servicemen have home study training and among them, it's NRI 2 to 1. It's a fact! Among men actually making their living repairing TV and audio equipment, more have taken training from NRI than any other home study school. More than twice as many!

Not only that, but a national survey,' performed by an independent research organization, showed that the pros named NRI most often as a recommended school and as the first choice by far among those who had taken home study courses from any school. Why? Perhaps NRI's 60-year record with over a million students... the solid training and value built into every NRI course ... and the designed-forlearning equipment originated by NRI provide the answer. But send for your free NRI catalog and decide for yourself.

25' Diagonal Color TV... Professional Instruments

As a part of NRI's Master Course in TV/Audio servicing, you build a big-screen solid state color TV with every modern feature for great reception and performance. As you build it, you perform stage-by-stage experiments designed to give you actual bench experience while demonstrating the interaction of various stages of the circuitry. And your TV comes complete with console cabinet, an optional extra with other schools. Likewise, NRI's

Two Famous Educators... NRI and McGraw-Hill.

NRI is a part of McGraw-Hill, world's largest publishers of educational material. Together, they give you the kind of training that's geared for success...;practical knowhow aimed at giving you a real shot at a better job or a business of your own. You learn at home at your convenience, with "bite-size" lessons that ease learning and speed comprehension. Kits designed to give you practical bench experience also become first-class professional instruments you'll use in your work.
*Summary of survey results upon request.
 instruments are a cut above the average, including a $31 / 2$ digit precision digital multimeter, triggered sweep 5 " oscilloscope, and integrated circuit TV pattern generator. They're top professional quality, designed to give you years of reliable service. You can pay up to $\$ 800$ more for a similar course and not get a nickel's worth extra in training and equipment.

[^0]
Widest Choice of Courses and Careers.

NRI doesn't stop with just one course in TV / Audio servicing. You can pick from five different courses (including an advanced color course for practicing technicians) sa you can fit your training to your needs and your budget. Or, you can go into Computer Technology, learning on a leal, digital computer you build yourself. Communicatiors with famous Johnson transceiver. Aircraft or Marine Electronics. Mobile radio, and more.

Free Catalog... No Salesman Will Call.

Send the postage-paid card for our free color catalog showing details on all NRI electronics courses. Lesson plans, equipment, and career opportunities are fully described. Check card for information on G.I. benelits. No obligation, no salesman will call. Mail today and see for yourself why the pros select NRI two to one!

If card is missing, write to:

Abstract

happening, the identity of the victim,

 and giving necessary instructions for emergency action. If the wearer falls to the ground, the device starts and continues to repeat the 4 -minute message loud enough to attract attention, for up to two hours.The manufacturer, National Identification Co., believes the equipment will save lives, since in the past some such cases have been mistaken for ordinary drunkenness and correct treatment delayed until too late.

Microneurosurgery is aided by compact color TV

Microneurosurgery-operation under a microscope-has been hampered by the fact that no more than two persons can watch the operation. Using extremely small surgical instruments, one surgeon operates looking through a binocular microscope while the other viewer uses the second lens of the binocular. This not only limits the possibility of training other surgeons, but places the surgeon in an isolated position, as the operating room staff are unable to observe the operation and therefore cannot intelligently anticipate the surgeon's needs.

With the help of a new compact color TV camera, devised by Motorola, New York's Mount Sinai hospital has overcome these difficulties. Since the size of the new camera permits connecting it directly to the microscope, the operation can be telecast to TV sets in the

operating room exactly as the surgeon sees it. The operation can also be recorded on videotape as an aid in training future surgeons for the same operation.

Auto license plate to go electronic?

An electronic license plate proposed by Dr. Fred Sterzer, director of the RCA Microwave Technology Center in Princeton, NJ, may make that now littleregarded part of the car an important factor in highway safety, vehicle scheduling and control, theft protection, and traffic control.

The device is described as "a printedcircuit antenna covered by a visual display of the license number, a frequency doubler, a modulator and an rf detector." It would receive signals on an assigned frequency and retransmit them on double that frequency. An integrated circuit encoder would enable the license plate to transmit a signal that would identify the vehice carrying it. Costing only a few dollars to make in quantity, the electronic license plate could:

1. Respond with a vehicle's identifying code when interrogated electronically. (Electronic interrogators (transponders) placed along streets and highways, and connected into a dataprocessing network could schedule or dispatch ambulances, police cars, trucks or busses more efficiently. Trucking firms could reduce the risk of highjacking by monitoring the progress of trucks

COMPACT COLOR TV CAMERA, SHOWN IN PLASTIC AT EXTREME LEFT, televises in color what the operating neurosurgeon sees through his microscope lens.
carrying valuable cargo. Interrogators could search for cars reported stolen, or report those whose owners were ignoring summonses for traffic violations.)
2. Receive and transmit messages to and from a vehicle. (The driver of a disabled car could transmit a coded call for assistance to fixed roadside receivers or to highway patrol cars, and could receive safety messages-or special calls from police vehicles, addressed directly to him.)

3. Serve as a transponder for a col-lision-avoidance radar. (The electronic license plate meets all the requirements for a second-harmonic reflector, as used in the second-harmonic highway collision avoidance radar demonstrated by RCA in 1972. Such radars avoid the clutter and confusion faced by ordinary radars, since they see only the signal transmitted-at twice the frequencyfrom the electronic license plate instead of the reflection of the direct transmitted signal, which can be bounced off roadside objects, cars approaching in the opposite lane, etc.)

While the adoption of such a radar system would-like the present adoption of safety seat belts-require legislation or mass manufacturer cooperation, Dr. Sterzer believes that such action would be well-advised. "One person is injured every six seconds and one is killed every ten minutes in the United States," he says. "Increased control over motor vehicles would be a cheap price to pay for reducing this slaughter.'

Television inventor Zworykin is unhappy with today's TV

Vladimir K. Zworykin, celebrating his 85th birthday, stated that to him the best control on the TV set is now the "off" switch. In language reminiscent of de Forest's "What have you done to my child?'" speech, he said: "When TV (continued on page 14)

MARK TEN B THE CAS SAVING, PLUG SAVNE TUNE-UP GAVNG, ELEGRENIC ICNIION FROM DELAA. NOW AS LCW AS \$4995.

Years of testing and use by race car drivers in all categories have froven Delta's Mark Ten B the most advanced ignition system cn the market today

Prove it to yourself. Give you car vrocoom! With a Mark Ten B Capacitive Discharge Ignit on System under the hood of your car great tาings will happen...like reducing costly tıne-ups by as ruch as 75\%. Further, ycu get tetter all-weather starts, quicker acceleration and better mileage.

Many operational problems caused by emission control devices, poor manifold ng or improper fuel mixtures disappear. Delta's Mark Ten B even improves the performance cf brand-new factory installed elect-onic ignitions (Chrysler and Ford). Factory systems merely eliminate points and condense ${ }^{-}$, but the Delta Mark Ten B combines the advantages of capacitive discharge with solid state

electronicy give rea porfor nance at
increasfod
encroy. Are you afor
it-yourselet?
Build your byn Mark Ten B.. s
available in low-fost
kit form. Or, if you pror, get the complete ready-to-ir st: : unit. Either way, you can install it yourself in minutes with no rew ring, even over Chrysler and Ford systems.

Mail the coupon today and disccver howlo enjoy happy motoring with Delta's Mark it हn B. The do-it-yourselfer's dream that $r=$ ely pays off.
 303-242.9000

Please send me free literature.
Enclosed is \$ \qquad \square Ship ppd \square Ship C.O.D. Please send:

Mark Ten E cassembled @ \$64.95 ppd._MarkTen B Kit@\$49.95 ppd. (12 volt negative ground only) Standard Mark Ten assembled, @ $\$ 49.95$ ppd._6 Volt: Neg. Ground Only 12 Volt ©pecify Pos. Ground \qquad Neg. Ground @ \$34.95 ppd. (12 Volt Positive or Negative Ground Only)

Car Year \qquad Make

This IC150 . . . is the finest and most versatile control unit I have ever used. For the first time I can hook all my equipment together at once. 1 find many semi-pro operations possible with it that I have never been able to pull off, including a first-class equalization of old tapes via the smooth and distortionless tone controls. / have rescued some of my earliest broadcast tapes by this means, recopying them to sound better than they ever did before.
--Ed Canby, AUDIO

Among the things you can do with an IC150:
Produce your own taped programs! Record from any of seven inputs: 2 phono, 2 tape, 1 tuner, 2 auxiliary (tape player, cassette deck, guitar, microphone, etc.)
Clean up record scratch, tape hiss and turntable rumble with filters which scarcely alter program material.
Improve frequency response with bass and treble controls for each channel.
Enhance stereo image with the IC150's exclusive panorama control.
Record two copies of a program at once, and monitor source and tape for each. Or, record on one tape deck while listening to a second tape.
Recreate original placement of soloists, small groups and actors, regardless of speaker position.

The IC150 performs all these functions and more with lower distortion and noise than any other preamplifier. This combination of clean sound and versatility cannot be bought anywhere else for less than $\$ 600$. But you can buy it for only $\$ 349$ at your Crown dealer. See him today to make your own comparison.

For independent lab test reports on the IC150, write CROWN, Box 1000, Elkhart, Indiana, 46514.
broadcasting began to develop, I hoped that it would be used for educational purposes, especially so that different cultures could learn to understand each other. Instead, most of the time when I turn on the TV-bang, bang, bang!'"

The Russian-born inventor, working for Westinghouse in 1923, demonstrated a crude television camera and receiver. When the head of his department saw it, Zworykin revealed, he said: "Put that guy to work on something more useful!" Later, Zworykin took his neglected device to RCA, where Sarnoff saw its possibilities and supported it to the ultimate commercial success.

CETA of Poughkeepsie area
 elects its 1974-75 officers

Ron Palluth, CET, of Poughkeepsie, NY, was re-elected president of the Consumer Electronics Technicians Association (CETA), at a meeting held at the Kitchen Restaurant, Hyde Park, NY, last June. Vice president is Ken Parese, CET, of Wappingers Falls, also re-elected. Treasurer is Tom McNamara, Salt Point; recording secretary Dan Ellsworth, CET, Kingston, and correspond-

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New.York, N.Y. 10003 (212) 777-6400 President: M. Harvey Gernsback Secretary: Bertina Baer

ADVERTISING SALES

EAST

Stanley Levitan. Eastern Sales Mgr.
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, III. 60646
(312) 792-3646

PACIFIC COAST/Mountain States

Jay Eisenberg

J.E. Publishers Representative Co.,

8560 Sunset Blvd.,
Suite 601.
Los Angeles, Calif. 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, Calif. 94124
(415) 467-0125
ing secretary, Dick Jones, also of Kingston.

Lessons from satellite teach teachers to teach

The first instructional television program to be broadcast by a satellite has been originated by the University of Kentucky at Lexington. One program is designed to show teachers how to teach children about adult careers, another includes lessons on conducting remedial instruction. The first programs were carried by land line from Lexington, KY, to Rosman, NC, and transmitted from there to Applied Technology Satellite 6, for re-transmission to waiting teachers from Huntsville, $A L$, to Fredonia, NY.

A New York Times reporter, covering 15 schools in the Applachian area, reports that signals from AT-6 came through strong and clear.

Other educational and medical programs were planned for later in the year, and it is anticipated that next year the satellite may be shifted farther east to transmit educational programs for 5000 villages in India.

R-E

The TELEQUIPMENT D61 is a low priced 10 MHz dual trace oscilloscope with sweep rates up to $100 \mathrm{~ns} / \mathrm{div}$ ．It is ideally suited for students，technicians， and hobbyists

Operating Ease．Front panel controls are engineered for instant recognition．Line or

rame displays are selected automatically in the TV trigger position．And．chopped or alternate modes are deter－ mined automatically to optimize display clarity

Bright，stable viewing．

Stabie waveforms，displayed on an $8 \times 10 \mathrm{~cm} \mathrm{crt}$ ，are easy to view，even under unfavorable ambient light conditions．Two identical input channels sim－ plify generation of $X-Y$ displays This is particularly useful in analysis of vector patterns．

Application versatility．

Because of its X－Y capability， the D61 simplifies alignment and troubleshooting of color television sets．Its performance equals or exceeds the require－ ments for servicing audio equipment，pocket calculators， public safety control，alarm， and communications systems． microwave ovens，digital clocks， and similar consumer elec－ tronic products

Compact，portable．Fully transistorized，and weighing only 15 pounds，the D61 occu－ pies only 6.3 inches of bench width．It＇s easy to transport and use in confined working areas．

Tektronix reliability．
TELEQUIPMENT products carry the well－known Tektronix warranty and are marketed and supported by the Tektronix organization．

Automatic triggering． TV Frame and line triggering．

Dual－trace，X－Y and vector modes．

Send me the D61 Spec Sheet and Teleau pment catalog．
\square Have your field engineer call to arrange a demonstration
Tektronix Inc．PO Box 500 Beaverton．Oregor a 105

Name

Titfe Telephone No．

Address
City \qquad State ．．．．

MORE NEW TECHNOLOGYPLEASE!

I would like to say that your magazine excells above the other publications when it comes to quality construction projects such as the character generator of the September 1973 issue. I'm sure you have received many letters appreciating this. I did send for the booklet also which I feel was well worth the cost. I have not as yet built the project, but plan to in the near future. I would like to see more projects of this caliber. I would especially be interested myself in monitor-receiver projects.

I like the idea of your magazine presenting new technology to its readers. Computers are now a part of our lives and with the number of calculators now on the market, we service technicians need all the updating we can get. No schooling is available of decent quality to aid technicians to service such equipment, so most people are forced to pay large service fees for manufac-turer-oriented service personnel.

The quality of technicians in general is below what it should be overall. The

CET licensing program will help tremendously. Shop owners should encourage the study and acquisition of CET certificates to their technicians. Right now, many shop owners either don't seem to know or don't care if a technician even possesses such a certificate.

Thank you again for the opportunity to "sound off.'
GERALD F. CLEMENT JR.
Canoga Park, Calif.

City of New York Dept. of Consumer Affairs 80 Lafayette Street New York, NY 10013 Elinor Guggenheimer, Commissioner

Dear Mrs. Guggenheimer:
Re: Chapter 32 title b Art. 44 Admin code.

Thank you for sending us a copy of the New York City Rules and Regulations relating to TV, Radio \& Audio Equipment repairs. The following are the observations I have:

1. Estimates have always been and
are now a most difficult problem for technicians. Often, diagnosing a problem from the symptoms displayed can lead even the best practicing technicians to believe a certain part is at fault when, in the end, it turns out something completely different is causing it. By requiring an estimate as outlined in the law, the technician and dealer are asked to be very accurate or face a loss or try to amend the estimate later.

I realize this is a most difficult area you have to deal with in the regulations, but it is one where after some experience, your department may want to modify the rules. This may benefit the dealers by relaxing the procedures while benefitting the set owner by allowing the dealer-tech to give more accurate estimates without over-protecting himself.

NESDA (National Electronic Service Dealers Association) is very interested in your experience in this regard and would be most happy to have your opinions on it, later, for our use in helping other areas solve problems in their legislation.
(continued on page 22)

- Tests Predetermined Frequencies $\mathbf{2 5}$ to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator

The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The FM-2400CH with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.

Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. 000125% special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

WRITE FOR CATALOG!

FM-2400CH (meter only).............. $\$ 595.00$
RF crystals (with temperature correction) 24.00 ea.
RF crystals (less temperature correction) 18.00 ea. IF crystals.....................catalog price
 to no lee - okla city okla. 73102

CHANNEL MASTER PUTS GREAT RECEPTION TOTHE TEST！

With the Ultra Hi Crossfire－－engineered with the performance that＇s made the Crossfire Series the world＇s most powerful and pop－ ular antenna－－－plus a retuned UHF section that delivers constant high gain across the band．

When tested against all other antennas of comparable size and element count，the Ultra Hi Crossfire proves its high standing by outperforming all others－－－in all critical gain areas！No other antenna in its category can approach the Ultra Hi Crossfire＇s com－ bined UHF and VHF performance．

Ruggedly engineered with extra heavy duty elements and tough construction，the UItra Hi Crossfire has the guts to stand the test of the worst wind and weathering con－ ditions possible．

Your Channel Master Distributor has actuà｜ results－－see for yourself how the Ultra Crossfire stands the test of great reception －－and comes out on top of its class！

It takes more learn about

Bell E Howell Schools introduces three fascinating learn-at-home programs featuring some of the finest equipment available as your "teachers." Choose the program you preferthen mail card for free details today!

Experience is the best teacher, without a doubt. And when it comes to learning electronics, we feel it's hands-on experience with state-of-the-art equipment that counts the most. That's why with Bell ε Howell Schools' learn-at-home programs you work with some of the most up-to-date equipment. Equipment that's being used today-and will be used tomorrow. So the skills and knowledge you acquire will be useful for years to come.

Of course, with all our learn-at-home programs you'll have plenty of lab manuals and basic principles to work with. And you'll also get exciting "teachers" to help make electronics come alive...
Lab Starter Kit gives you hands-on experience with the very first lesson.

We get you started with the basics in an exciting way! At the very beginning you get a fully-assembled volt-ohm meter as well as design panels, modular connectors, experimental parts and battery. So you don't just read about electronics principles, you actually see them at work!
You build your own Electro-Lab" electronics training system.

Whatever program you choose, you get your own home laboratory including oscilloscope, digital multimeter and design console to give you actual experience in wiring, soldering, assembling, testing, trouble-shooting and circuit analyzing.
I. Learn new skills in the field of Home Entertainment Electronics including building the new generation color TV.

What better or more exciting way to learn digital electronics! Once you have the basics under your belt and get into color theory and service, you'll build a $25^{\prime \prime}$ diagonal color TV and probe into the digital technology behind digital channel numbers that flash on the screen ... a digital clock that flashes the time to the second and an automatic channel selector.

As you put the set together, you'll discover how advanced integrated circuitry works, how to trouble-shoot it and much more. Upon completion of the program you'll have gained the specialized occupational skills to service color TV's plus the principles that you can apply to repair a variety of home electronic equipment. And you'll have the foundation to understand and work with new product applications as they're developed, too!
II. Use proressional communications equipment as you delve into Communication Electronics .

Here's how to pick up skills in the vital field of two-way radio, widely used in public safety, marine, industrial and transportation areas. Bell \mathcal{H} Howell Schools Communication Electronics Program can help prepare you for the FCC licensing exam, right through to 1st class radiotelephone operator. And teach you skills in two-way radio, radar or commercial broadcasting.

For a refundable deposit, you get to use the special two-way radio equipment lab featuring an FM transceiver frequency meter, and modulation meter. All regular, first-rate commercial grade test equipment.

than books to electronics.

III. Digital Trainer helps you learn the latest in Industrial Digital Electronics.
integrated circuits so you'll have a solid background in modern digital electronics and its applications to indust y.

Digital technology is setting new standards of accuracy and beginning a revolution in industry. For example, more precise control in refining, manufacturing plants, food processing and transportation. And now you can learn about this technology with Bell \& Howell Schools unique Digital Trainer. You'll analyze and experiment with various types of
 You study at home in your spare time ... with help as close as the telephone. Because these are home study programs, you can learn electronics without missing a day of work or a single paycheck

You study at your convenience without being a classroom captive. If you ever have ariy questions, you can cal our toll-free number for heip. You can also meet and talk shof with fellow students and instructors at "help sessions" held in 50 cities at various times throughout the year Bell \& Howell Schools tries to give you more personal attention than any other learn-athome program.

Decide which exciting program

 you're interested in . . . you can check more than one. Then mail postagepaid card today for free information-no obligation!Taken for vocational purposes, the Home Entertainment and Industrial courses are approved by the state approval agency for Veterans' Benefits. Please check box on card for free informatio-

1. Power Cutput Me! Design Console 3. Modulation

Meter 4. Digital Multimeter 5. Triggered Sweep Oscilloscope 6. Lab Starte riit Multimeter 7. Frequency Meter 13. FM Transceiver 9.25" Diagonal Co or TV 10. Alignment Generator
11. Lesson Tape Player
12. Digital Trainer

724

If cand has been removed. please write to:
An Elect mons Home Study Schoo: DeVAY InStitute of technalagy
Bell e Howell Scirools

AUDIO HI-FI \& TAPE RECORDERS	
tron	
Sterea	
FM Stereo ©uad Rectiver Servicing Manual. L92 p	
Experimenting With Electronit Music. 180	
Cassette Tape Recorders/How They Work/Care \& Reparr.	
Ruestions \& Answers about tape Recording. 26.40 .102111	
4 -Channel Stereo-From Source to Sound. 17 th b	
lap Radio, Record 8 Tape Player Svcing. Manual. $812 \mathrm{z} 11^{\text {² }}$	
Acoustic Technoques for Home and Studio. 2088 p . 168	
Basic Audio Systems. 2400	
Selecting \& Improving Your H.FFISystem. $224 \mathrm{~g}, 122$ Ill	
Pictorial Gude to Tape Recorder Repairs. 256 p ¢ 328 il	
How to Repair Musical Instrument Amplifiers. 278 p 110	
Serviting Electronic Organs. 81 2 $111^{\prime \prime}$ 19Fip	
Electronic Musical Instruments. 192 p, 121 11	
SvCing Modern H:F/ Sterea Systems. 248 d D. 125	
Handbook of Magnetic Recording. $224 \mathrm{p}, 901$	
Installing and Svcing. Home Autio Systems. 256 p	
Tape Recording for Fun \& Profit. 224 p . ore	
dio Systems Handhook. 192 p. 128	

AUTO ENGINE \& APPLIANCE REPAIR

The Comp. Hobk. of Auto Engines \& Systems. 218 D, 239 ill $\$ 5.95$ Rapid auto Tuneup \& Troubleshooting. 80 The Complete Snowmobile Repair Handbook, 348 Modern Guide To Auto Tuneup \& Emission-Control Svce. 240 how to Repair Small Gasoline Engines.
Everyman's Guide to Auto Maintenance.
The Complete Minibike Handobook, 320
Using Electronics Testers for Auto Tuneup. 256 p.. 22
Major Applance Repair Guide. 260 p
Smal| Appliance Repair Guide. 224 p .
Aefrigeration. 148 p.. 53 ill.

HAM RADIO, COMN'S., B'CASTINE., CATV

Amatuer FM Conversion \& Constr. Projects. 276 , 187 , $\$ 5.95$ Broadcast Anncr. 3rd Class FCC Study Guide. $1560.19111 \quad \$ 3.95$ The Complete Shortwave Listeners Handhook. 288 p., 101 ill. $\$ 6.95$ How To Be A Ham-Including Latest FCC Rules. 192 p . $\$ 3.95$ Commercial FCC Litense Handbook. 444 p.. 150 ill. $\$ 5.95$ The 2-Meter FM Repeater Circuits Handbook. 312 p.. 182 Mobile Radio Handhook. 192 p.
pictorial Guide to CB Radio
Design. and Main, the CaTV \& Small TV Studio. 256
Video Tape Prod. \& Commun. Techriques. 256 0. 100
GaTV Systems Engineering-3rd Ed. 256 p
C8 Radio Service Manual. 228 p.. 98 ,11

hobey projects \& plans

Electronics For Shutterbugs

$\$ 5.95$ $\$ 5.95$

Practical Cricuit Eesagn for the Experimenter.
Pract. Triac/SCR Pro. For The Experimenter Protessional Picture Framing For The Amateur Minature Projects For Electronic. Hobbyists.
Digitai Eiectronics: Principles 8 Practices.
New IC FET Principles and Projec
Handbook of $1 C$ Circuit Projects.
Stereo/luad H1.FI Principles and Proj
How To Build Solid State Audio Cir
Solid-State Projects for the Exper.
104 Ham Radio Projects For Novite \& Techni
Electronic Hobbyist's if Project Handbook
Radio-Electronics Houby Projects. 192 D.,
VHF Projects for Amateur \& Ex
125 One-Transistor Projects. 192
ic Projects for Amateur $\&$ Experimenter
104 Easy Projects for the Electronics Gadgeteer. 160 p.
104 Simple Done. Tube Projects. $192 \mathrm{p}, 104$
104 Easy Transistor Projects You Can Build

"LEARM IT YOURSELF" BEGINNER'S BOOKS

Elect. Unraveled-A New Commonsense Approach
Model Sail \& Power Boating, by Remote Control. Electrical Wiring 8 Lighting For Home \& Office.
Basic Electricity and Beginning Electronics. 25 Basic Electronic Circuits Simplified 352 How to Read Electronic Circuit Diagram Basic Electronics Course. 384
Beginner's Guide to TV Repair.
How To Become a Radio Disc Jockey. 256 p., 25 lessons Basic Radio Course. 224 iliustrated p
Basic Ty Course. 24 p.. 128 Ex
Electronits Self-Taught with Exp. \& Proj. 228 o., 191 ill.
Model Car Racing by Radio Control.
Basic Electronics Problems Solved.

RADIO \& TV SERVICING

REFERENCE \& GENERAL ELECTRONICS

Madern Communications Switching Systems. $276 \mathrm{p} ., 171 \mathrm{Il} . \$ 17.95$ Getting The Most Out Of Your Elect. Calculator, 204 p., 18 ill. $\$ 4.95$ | indexed Guide To Mad ern Electronic Circuits, 216 p., 92 ill. |
| :--- |
| Modern Applications of Linear IC's, 276 p., scores of ill. |
| $\$ 12.95$ |
| 1.95 | Solid-Staple cications of tinear IC's, 276 p ., scit

T'shting. Solid-State Wave Gen o Shaping Cir Handhook of Semiconductor Circuits. 444 p.
Basic Math Course for Electronics. 168

Fitro. to Medical Electr's. far Elect./Med. Pers. 272 p., 126 ill. $\$ 6.95$
Fire \& Theft Security Systems. 176 p., over 100 il
Tube/Transistor Substitution Guid
Marine Electronics Handhaok. 192 p., 106
Handbook of Electronic Tables-2d. Ed. 224 .
Solid-State Circuit Design \& Operation. 272 p.r 150 Ill
Electronics Data Handhook-2d. Ed. 256
7 Pulse \& Switching Circuits. 258 D. 184 ill
Modern Radar: Theory, Oper. and Maint. 480 p., 367 ill. Inst \& Svcing. Electranic Protective Systems. $252 \mathrm{p}, 160 \mathrm{ill} . \$ 4.95$

ALL-IW-ONE TV SHHEMATIC/ SERVICING MANUALS

Each volume contans complete service data, incl. full-size schematic
diagrams, $\&$ all info needed. All $81 / 2 \times 11^{\prime \prime}, 212 \mathrm{p}$. $\$ 4.95$ unless othernise marked
COLOR: Sveng. Modular Recvrs. Vol. $1 \square$, Vol. $2 \square$; admiral Vol. 1
$\$ 5.95 \square$, Vol. $2 \square$ GE Vol. $1 \$ 5.95 \square$ Vol. $2 \square$ Jap. Vol. $1 \square, 2 \square$

See these helpful books at your parts distributor or clip this ad and order on FREE 10 -DAY TRIAL!

NO RISK COUPON - MAIL ENTIRE AD

TAB BOOKS, Blue Ridge Summit, Pa, 17214
Please send me books checked above

\square I enclose \$

\square Please invoice on 10 -day FREE trial
Send FREE 36-page catalog
Name _ Phone

Address		
City	State	Zip_-_
SAVE POSTAGE by remitting with order. Soreign add 10%. Pa, residents add 6%.	RE-114	

LETTERS
(cominuted from page 16)
2. Reg. No. 11 would be interpreted by a majority of judges as meaning any (TV-Set, Stereo, Radio, etc. as a unit) must be warranted or guaranteed, both parts and labor. I don't think that is your intent. but it must be spelled out that only those parts replaced and only the actual repair work charged for are guaranteed. As is, the dealer is expected to be a philanthropist, possibly repairing an inexpensive item (for example) and yet being asked to warrant the $\$ 250.00$ picture tube!
3. In Indiana and in all other of the nine states with electronic service legislation, there is an industry advisory board. Without these experts to advise you, some common servicing practices may seem wrong when they are right. To discredit a dealer unfairly or your department would lessen the effectiveness of the regulations. Consider appointment of such a board (preferably a five-man board).
4. The $\$ 100.00$ fee for a dealer license is quite high when compared with that in other states. I realize that for effective administration of the law that you will need investigators, a staff, etc. and other items. However, other governments with fewer shops have been able to have a greatly reduced cost for the license to the shop.

Since this cost, as well as the other costs in time and materials which this regulation will impose on the dealers, must be passed on to the set owners, reduction of the fee would be in the best interest of the public.
5. Equal justice under this act is so vital. Much of the problems of the electronics service business over the years has been caused by people performing service with an unfair advantage. Examples of this are those servicers who operate on a haphazard basis out of their homes, who hide their income thus not paying any taxes on it; who do not protect their customers by having insurance; etc.

If all servicers in New York have to play the game by the same rules equally, this law can be complied with, with the above modifications. However, if enforcement is not certain and swift, the law could merely increase the cost of service and lower its quality

If I can be of further service to you or the dealers and techs in New York, feel free to call on me.
DICK GLASS
Executive Vice President
NESDA
Indianapolis, IN
R-E

NEW FREEDOM OF SPEECH on your phone
 Amplifies calls to room filling volume！

Radon Therch

```
*)
***:0,0,*)
```



```
* *oi*oiococe
*****OO*****************
```



```
*)
**************************
```

DUJOFONE ELECtRonic telephone amplifier s-stem

FREE New 1975 Radio Shack Catalog

OVER 2000 PRODUCTS EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR

Stereo－Quadraphonic • Phonographs TV Antennas－Radios－Citizens Band Kits－Amateur Radio－Tools Auto Tune－Up－Batteries－Wire Test Instruments • More！

164 pages of the finest in home and hobby electron cs Respected names like Real istic．Micronta．Archer Science Fair－and they＇re available only at Radio Shack stores and dealers nationwide＇See what＇s really new in electronics

SEND FOR YOURS TODAY！
FILL OUT COUPON BELOW

Hands－free use－talk and listen as if the other party were in the room with you DUōFONE is the first low－cost amplifier system that liets you write，work，even walk around as you talk on your plone．Its ultra－sensitive microphone picks up your normal conversational voice from anywhere in the room．And its solid－state amplifier lets you hear callers as clearly as listening to a radio volume control，reliable battery operation，stylish molded enc osures． Our Jack－In－A－Plug makes installation instant with most shones． \＃43－270．There＇s only one place you can find it ．．Radic Shack！

Customer－owned equipment connected to telephone company equipment may be subject to local tariff．

master chance

5

Master Charge or BankAmericard al participating stores

Radio Shaek

3000 STORES • 50 STATES • 8 CCMUNTRIES
Retall prices may vary at individual stores

346 Ways

 To Save On Instruments, Burglar Alarms, Automotive \& Hobby Electronics!The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance.
> "Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 \varnothing$ for fast first class mail service.

EICO-283 Malta Street,
Brooklyn, N.Y. 11207
Leadership in creative electronics since 1945.

AUTOMATIC LIGHT SWITCHES

by JACK DARR
 SERVICE EDITOR

automatic light switches have become quite popular, not only in rural areas but in suburban areas as well. These switches use a very simple electronic circuit; a small relay which is controlled by a photocell. When the outside light is high enough, the relay is energized and the light goes off. Figure 1 is the schematic of a typical unit. This is one of the smaller types, for controlling lamps up to 300 watts. There are several different sizes, including types which can control highintensity mercury lamps.

The ac current flows through a $5100-\mathrm{ohm}$ resistor (refer to Fig. 1), through a cadmium-sulphide photo-

$$
\text { FIG. } 1
$$

cell (abbreviated CdS), then through the coil of the relay. The CdS cell here is used as a variable resistor. The arrows are the symbol for a lightactuated device.
When the cell is dark, it has a high resistance. More light falling on it decreases the resistance and more current flows. The relay contacts do the actual switching. They are normally closed ("NC") when the relay is not energized, and the light goes on. This gives us "fail-safe" operation. If anything goes wrong in the control circuitry, the light remains lit.

The control unit is usually mounted on top of the lamp reflector, under a small metal cover. This will have a little window in it; the photocell is mounted behind this. For best results, this window should be on the north
side of the cover when installed. This keeps the direct rays of the sun from falling on it, and gives better control of the light.

To repair one of these, start with the lamp. If the lamp won't light, replace the bulb with a good one. Now, cover the window on the housing with your hand. You should hear the relay click. If this happens, but the light still refuses to go on, turn the power off and remove the cover. There are several hot wires exposed, so don't take any chances.

Check the relay contacts; they may be burned or pitted so badly that they do not make contact, even though the armature of the relay may pull in. In most of these units, the contacts are easily accessible. Pull a strip of fine sandpaper between them, holding the armature down with your finger (power OFF, remember!) Close the relay gently by hand and look at the contacts; you will be able to tell whether they're touching or not. Turn the power on, keeping clear, and recheck the unit to see if it's operating. You can cover the photocell with a piece of dark paper or cloth.

One common cause of damage to these units is a nearby lightning discharge. If this has happened, you will probably see burned parts, charred insulation or carbon "tracks" across insulators. If this is the case, take the unit off and repair it.

Disconnect both wires and remove the control unit and lamp socket. You'll need an ohmmeter to check it. Disconnect the capacitor across the relay coil and check it for shorts. If it has shorted, the 5100 -ohm resistor will probably be well charred, too. Replace these, if they're bad. Before connecting them back, check the relay coil. If it too, has been damaged by the lightning, its coil will look very dark, or even charred. Normal resistance of a typical unit is about 1000 ohms.
If the capacitor took a direct hit, its case may have exploded, so that you can't read the markings. Fortunately, they aren't too critical; a . $01-$ $\mu \mathrm{F}$ capacitor at 600 volts is a good size.
While the circuit is opened up, check the photocell. With the surface

Now make almost all your replacements with RCA's medium-priced Colorama A's

That's the kind of socket coverage you can count on from this popular new "middle line" of RCA replacement color picture tubes. With just eight Colorama A types, you can cover almost all of the replacement market with "Grade A" performance at a price your customers can afford.

Every tube in the RCA Colorama A line is totally remanufactured. That's why they all can carry RCA's 18-month inboarded warranty plus the option for an additional 12 months. Each has a completely new gun and a completely new screen made of the latest all-new rare-earth phosphors. In addition, every " V " type is made of advanced x-ray glass.

The RCA Colorama A line includes three Matrix types: CA-21VAKP22, CA-23VA, LP22 and CA-25VABP22. These advanced FiCA Matrix tubes are as much as 100 percent brighter than any equivalent non-Matrix picture tube in RCA history.

So why not give your customers the "Grade A" choice. Choose Colorama A at your RCA Distributor today.

Remember, RCA is the world-wide leader in picture tubes, with over 65 million produced to date.

RCA/Electronic Components/Harrison, N.J. 07029

equipment repport

Technics Model RS-676US Dolby Cassette Recorder

Circle 110 on reader service card
WITH EACH NEW DEVELOPMENT IN high fidelity, manufacturers often just dip their toes in the water while checking on what everyone else is doing. Few take the full plunge at once.

But in the Technics (by Panasonic) RS-676US cassette recorder, we find virtually all the latest advancements made in hi-fi in the last few months.
Starting off, the RS-676US is basically a Dolby cassette deck with the addition of special switching and calibration that permits the Dolby processor to be used for monitoring (or recording) Dolby FM broadcasts. Next, we find the tape transport is unlike most other cassette mechanisms you've run across. This mechanism has two motors: one for the capstan drive and one for a "superspeed" rewind and fast forward. Looking even closer we find the mechanism is all solenoid operated-the control buttons operate only solenoids, which in turn provide the mechanical operations. All-solenoid control means remote control is possible, and the rear panel of this recorder has a remotecontrol socket for an optional control unit, or one you can easily build yourself.

Finally, we come to the peak/average VU meters used for setting the recording level. When the cassette system first made the hi-fi scene, it was nothing more than an improved version of the basic Philips casette system, which was intended for recording speech. The reference recording level was pegged at tape saturation for the average program level, and signal peaks were driven well into tape saturation distortion - there was no
"headroom". To maintain an acceptable signal-to-noise ratio, the reference recording level for hi-fi was maintained at tape saturation; a colossal blunder, because the tape got better but the signal level was still driving program peaks into tape saturation.

With the newer tapes plus Dolby B noise reduction, the signal-to-noise ratio is sufficient to permit reducing the average program level to provide "headroom", and that's just what Panasonic has done in their latest recorder. The $0-\mathrm{VU}$ record level is $6-\mathrm{dB}$ below tape saturation. When the VU meters are switched to normal the meters indicate as do any other level meter, the difference being that $0-\mathrm{VU}$ is $6-\mathrm{dB}$ below 2% total harmonic distortion (from the tape)

So in one package we find the latest developments in hi-fi: Dolby FM, automatic chromdioxide equalization switching. cassette tape "headroom", solenoid operation and superfast tape wind.

There are controls for record input selection, line/tuner record level, record balance, and concentric left and right microphone record level. There are switches for Dolby B in/out/filter, Dolby FM in/out, tape type and peak/normal VU meters. Left and right screwdriver-adjust controls on the front panel permit calibration of the Dolby FM circuit to 50% modulation -the Dolby reference level for FM broadcasts. (FM stations transmit the calibration tone once or twice a day; and once the controls are adjusted their setting is permanent as long as the same FM tuner is used.)

The FCC has recently allowed Dolby FM stations to use a $25-\mu \mathrm{S}$ preemphasis instead of the standard 75 $\mu \mathrm{S}$. The recorder has a $75 / 25 \mu \mathrm{~S}$ compensation switch on the rear to permit optimizing recording and reception of either pre-emphasis. When the recorder is set to Dolby FM, the output to the amplifier's tape monitor is "flat"-the Doly processor can be used for straight listening as well as recording.
The tape mechanism has pushbut(continued on page 110)

It's a mod. mod. modular world.

Simplify, simplify! Instead of paying more for bigger, bulkier audio control components, pay less for compact Shure modular components that singly or in combination-handle critical functions flawlessly. Cases ill point: (1) the M67 and M68 Microphone Mixers, the original high-perfor nance, low-cost mixers; (2) the M610 Feedback Controller, the compact component that permits cramatically increased gain before feedback; (3) the M6:l Audio Master, that gives almost unlimited response shaping characteristics; (4) the M688 Stereo Mixer, for stereo recording and multi-source audici-visual work; (5) the M675 Broadcast Production Master, that works with our M67 to create a complete production console (with cuing!) for a fraction of the cost of conventional consoles; and (6) the SE30 Gated Compressor 'Mixer, (not shown above) with the memory circuit that eliminates "pumping." For more on how to "go modular," write for the Shure Total Commuini"ations Components Catalog No. AL280.
Shure Brothers Inc.
222 Hartrey Ave., Evanston, III. 60204
In Canada: A. C. Simmonds \& Sons, Limited

The better the

 the bettercompare
what we
ofter in inits Compare what we

and lessons.
 M

COMPU-TRAINER lessons.

JICITAL MULTIMETER

ELECTRO - LAE

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the $5^{\prime \prime}$ solid-state oscilloscope, transistor and tube-tester, vector monitor scope, 74 sq. in. B\&W TV, and solid state stereo AM-FM receiver. The unique NTS Digital GR-2000 color TV with first ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock,) and big 315 sq. in. ultra rectangular screen. This is just a sampling of the kind of

NTS DIGITAL GR-2000 SOLID STATE COLOR TV WITH 315 SQ. IN. PICTURE and Varactor digital tuning the electronics industry.
This electronic gear is not only designed for training; it's field type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
equipment

Compare aur training; compare our tuition. We employ no middlemen because we need no salesmen. We believe you have the right to make your own decisions based on the facts, and you'll find these all spelled out in our catalog mailing. Lessons, kits, and experiments are described in full color. Most liberal refund policy and cancellation privileges - it's all in writing. And our low tuition is another big advantage. No frills, no commissions to pay. This means lower tuition for you. You receive solid training value. NTS puts more into your training, so you get more out of
it. Make your own decision. Mail the card, or write if card is missing. There's no obligation, ever, and no salesman will call.
Approved for Veteran Training. Get facts on new 2-year extension.
NATIONAL Rectical SCHOOLS
TECHNICAL-TRAOE TRAINING SINCE 1905
Resident \& Home Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037

while the guy down the street complains about how tough alignments are...I do them!

I used to hook up a separate sweep generator, marker generator, marker adder and bias supply, hope that everything was properly calibrated and adjusted, and pray that the alignment would hold after I disconnected the cables draped all over the bench

I didn't do it very often.
Now, in the time it used to take me just to set up, I can almost complete an alignment. And I'm confident the set will perform as well as it possibly can. My customers notice, too. That's the difference B\&K's 415 Solid-State Sweep/Marker Generator made.

Setup is no problem. After I connect the 415's outputs to my scope (there's even low-frequency compensation to eliminate pattern errors), I connect its RF outputs (channel 4 or 10) to the antenna terminals or mixer test point, the direct probe to the video detector test point (or anywhere else after the video detector diode) and the cemodulator probe to the bandpass amplifier output

They're all clip-on connections, and the 415 comes with all the accessories I need. Once l've made the initial signal and bias hookups, there's nothing else to connect or reconnect. All intercabling changes and generator functions are controlled from the front panel. There's even a $15,750 \mathrm{~Hz}$ filter to eliminate disabling
the set's horizontal output section
Shaping the waveform is easy, because the 415 has 10 crystal-controlled IF markers, each of which lights up on the front-panel waveform diagram as it is used Markers can be shown either vertically or horizontally on the scope trace. There's a 100 kHz modulated marker that makes nulling the traps so easy it's almost automatic. And three low-impedance, reversiblepolarity bias supplies - two, 0-25VDC; one, 0-50VDC

Vertical Markers

Markers Tilted Horizontally

Every step is easy to understand, too, thanks to the comprehensive manual

Since I have nothing to sell but my time, I have to make the most profitable use of it I can. That's why I have a B\&K 415.

In stock now at your local distributor or write Dynascan.

1801 W. Belle Plaine Ave. Chicago, 1160613 - Phone (3121327-7270
Complete Line of Analog and Digital Multimeters, Oscilloscopes, Signal Generators.
Semiconductor Testers, Power Supplies. Probes. Tube Testers and Substitution Boxes

BUILD 200 Watt－Second
 Build any of the three bare－bulb photoflash units described in this article． An optional optical trigger is also described．

 Photoflash
by JIM GUPTON

BARE－HULB ELECTRONIC PHOTOFLASH units are becoming increasingly pop－ ular with amateur and professional photographers．Soft shadows and wide angle coverage increase the versatility of any＇camera and make those＂Im－ possible＂group shots．．．possible．Add a Lawson Enterprises＂Reflectasol＂to a hare－bulh photoflash and you have a professional studio light source for color portraits．By obtaining power from the standard 1｜7－volt ac line． you eliminate the weight and expense of batteries and have the fastest re－ cycling time of any electronic photo－ flash on the market．

This article contains the construc－ tion details for three bare－bulh photo－ flash units．The first unit uses computer－grade capacitors and has an output of 200 watt－seconds．The sec－ ond unit has an output of 100 watt－ seconds and uses standard photoflash capacitors．A selectable output unit having 50，100，150，and 200 watt－ second outputs is also described．

All three photoflash units can also be used as slave units with an optical trigger circuit that is described．As a slave unit，the photoflash is triggered with the light from a photoflash mounted on your camera．This elim－ inates the need for sync cords and per－ mits the placement of the slave unit anywhere in the picture taking area．

Optic：lly triggered slave units are com－ monly used among professional photographers．

Of all electronic construction proj－ ects，none can be more deadly than the elcctronic photofiash unit．Voltages ranging between 400 and 500 Vdc，at a current of 1 ampere，can kill you！ Therefore，every step of the construc－ tion，including the final assembly and testing，must be and is，engineered to protect you against accidental shock hazards and possible fatal injury．It is imperative that no deviation from the specified material be attempted．When constructing one of the three alternate photollash circuits，ohserve capacitor polarity at all times．

Plastic canister housing

The electronic circuits for the bare－ bulb electronic photoflash must be housed in a shock－proof container． Metal cases offer considerable physi－ cal protection，yet the metal exterior is like．y to become charged and it will create a shock hazard when contact is made with a common ground circuit． The iceal case to house the bare－bulb photoflash can be found in the house－ hold section of most any department store or discount house．The article＇s housing was originally one of a set of four kitchen canisters．It has rigid side walls and ample inside dimensions to
house the electronic circuit ecurely with complete protection from acci－ dental shock hazards．

To eliminate the molded handle grips and bottom depressions of the canister＇s top and bottom，sineply cut away the surface containing th 2 raised handle and bottom depressions．and replace it with a matching sontour section of fiber glass prinler－circuit board．The fiber glass board provides a metal shielding surface ard is rigid and thin enough to support the flash tube circuits．They are easil．sttached to the plastic top and botto n with epoxy cement and small alıminum angle sections to assure firm attach－ ment and rigidity．In my model，a metal ring surrounds the flash tube to provide mechanical protectior to the tube and to serve as support for a large reflector．Renember thit the wall thickness is an important iten in se－ lecting your plastic canister．The plas－ tic walls must have enough trength to support the photoflast when mounted on a tripod．Flexible plastics should not be substituted as trey can－ not meet the support requirem snts．

Power－capacitor bank circtits

The schematic circuit diagram in Fig．I illustrates two types of capaci－ tor banks．One type of capacit r bank is series connected，provides a 200
watt-second output, and is shown in Fig. 1-a. Figure l-b shows the alternate, parallel circuit which provides a 100 watt-second output,

The series circuit takes advantage of high-capacitance computer-grade capacitors for high output power at a
minimum of space requrements. However. there are some who may be apprehensive about the ability of com-puter-grade capacitors to hold up under rapid discharge cycling and of the higher leakage rate common with this type of capacitor. The alternate, par-

ALTERNATE CAPACITOR BANK
a

Fig. 1-BARE-BULB PHOTOFLASH CIRCUIT. Circuit a shows the series capacitor bank which provides a 200 watt-second output. Circuit b shows the alternate capacitor bank which provides a 100 watt-second output. With the optional addition of capacitors C5 and C6, circuit b provides 200 watt-seconds. An optional switch wired between the positive terminals of the capacitors in circuit b will also provide multiple power output ratings. Circuit c is the trigger circuit.

FIG. 2-FOIL PATTERN for series capacitor bank which provides 200 watt-second output. This foil pattern is also used for the parallel capacitor bank, having an output of 100 wattseconds, with a jumper connected between J1 and J2 and other modifications (see text).
allel crreuit employs the standard photoflash capacitors for maximum power output and requires a larger canister housing.

Computer grade capacitor circuit

The circuit board illustrated in Fig. 2 can be used for computer-grade ca-

SLAVE TRIGGER PARTS LIST

SC1-National Semiconductors Ltd. NSL-701-3, 3-element, series-connected silicon cell
C1-0.01 $\mu \mathrm{F}$ ceramic disc capacitor 50 Vdc
R1-39K; $1 / 4$-watt resistor
SCR-General Electric C106B3 SCR Ac plug

TRIGGER CIRCUIT PARTS LIST

R5, R7-2-megohm 1-watt resistor
R6-3-megohm 1-watt resistor
C5-. $25 \mu \mathrm{~F}$ Mylar capacitor 400 Vdc
Flash tube socket, standard 4 pin radio socket
Flash camera sync socket, standard ac socket
Flashtube DX-5—Kemlite Laboratories, 1819 W. Grand Ave., Chicago, III. 60622

200 WATT-SECOND SERIES CAPACITOR POWER PARTS LIST

S1-Dpdt switch-rocker or toggle type, Allied Electronics No. 700-5110 or equal
F1-1 $1 / 4$ amp. Slow-Blow
D1, D2, D3-General Electric A15B or equal 1A 200V silicon rectifier
R1-400-ohm, 10-watt resistor
R2, R3-30K, 5-watt resistor
C1-180 $\mu \mathrm{F} / 200 \mathrm{Vdc}$ Mallory No. CG181T200A1
C2- $180 \mu \mathrm{~F} / 350$ Vdc Mallory No. CG181T350B1
C3, C4-3900 $\mu \mathrm{F} / 250 \mathrm{Vdc}$ Mallory No. CGS393T250FH1
Ac line cord and plastic strain relief.

PARALLEL CAPACITORPOWER PARTS LIST

S1-Dpdt switch, rocker or toggle type, Allied Electronics No. 700-5110
F1-1 $1 / 4$ amp. Slow-Blow
D1, D2, D3-Silicon rectifier GE type A15B or equal
R1-400 ohm, 10 watt resistor
C1-180 $\mu \mathrm{F} / 200 \mathrm{Vdc}$ Mallory No. GC181T200A1
C2-180 $\mu \mathrm{F} / 350$ Vdc Mallory No. GC181T350B1
C3, C4, C5, C6-525 $\mu \mathrm{F} / 450 \mathrm{Vdc}$ Mallory type FF45052 or equal
pacitors in series or standard photoflash capacitors in parallel with minor changes. The series circuit employs Mallory $3900-\mu \mathrm{F}$. computer-grade capacitors. This amount of capacitance will produce a 200 watt-second output to the flash tube. Resistors R2 and R3 serve to equalize the voltage across the capacitor discharge bank, C3 and C4. To produce the charging dc voltage
for C3 and C4，capacitors C1 and C2， in conjunction with the silicon diodes D1，D2，and D3，form a voltage－ tripler circuit to transform 117 volts ac into 450 volts dc．Fuse F1 is rated at 1 ampere and must he of the Slow－ Blow type due to the greater current drain during the initial forming of computer－grade capacitors．Likewise， the current limiting resistor R 1 is rated at 10 watts and must be mounted no less than $1 / 8$ inch above the circuit board to properly radiate the heat gen－ erated in the initial forming operation．

A jumper is indicated at J1 and J2 of Fig．2．The jumper is only used when modifying the circuit board for standard photoflash capacitors and is not required for series capacitors．The dimensions indicated on Fig． 2 are to locate drill centers for components and capacitors．All electrolytic capaci－ tor terminal holes are $1 / 4$ inch in di－ ameter．When mounting the capacitors， be sure that the number 10 washer is between the copper circuit and the capacitor terminal with the mounting screw inserted through the $1 / 4$－inch hole from the component side of the circuit board．Be sure the correct po－ larity is observed in mounting the capacitors．

Parallel standard photoflash capacitors

Only minor modifications are needed to convert the circuit board in Fig． 2 to the parallel－connected standard photoflash capacitor bank．The 1050 $\mu \mathrm{F}$ capacitance（ $525 \mu \mathrm{~F}+525 \mu \mathrm{~F}$ ）will produce an output of 100 watt－seconds or，if you prefer，you can use the larger circuit board in Fig． 3 with four standard photoflash capacitors．This will produce a 200 watt－second output similar to the computer－grade series capacitor circuit．In parallel use，the circuit board in Fig． 2 does not require R2 and R3．The 10 －watt resistor R1 must now be connected between the cathode of D3 and the heavy foil strip running across the top of the board．（Use the holes provided for R3 in the series－capacitor circuit．）Capa－ citor C 4 must be reversed in polarity so that the positive terminals of C3 and C4 are attached to the plus bus circuit．Now connect a number 18 wire between jumper terminals J1 and J2．Trigger terminal T2 cannot be used as shown．Move it to the positive terminal bus at point R2．No change is made to the voltage－tripler circuit or its associated capacitors or diodes．

The four－capacitor parallel circuit （Fig．1－b，using the circuit board in Fig．3）can be modified to provide selectable light output．For a choice of either 100 －or 200 －watt－second out－ put，connect a single－pole，heavy－duty

FIG．3－－FOIL PATTERN for parallel capacitor bank which provides 200 watt－secenc output （connect jumper between J1 and J2）．With modifications，the foil pattern is also used for the multiple power output flash（see text）．

toggle or rocker switch instead of the jumper between points J 1 and J 2 in Fig．3．For a choice of $50,100,150$ or 200 watt－seconds，modify the cir－ cuit board by removing the copper foil paths between the positive terminals of C3 and C5 and C4 and C6．Install a heavy－duty single－pole，4－position progressive－shorting switch on the housing top．Connect the four termi－ nals to the positive terminals on C3－ C6 and the arm to point T2．

WARNING：ONLY POWER－CAPA－ CITOR BANK（Fig．1－b）CAN BE MODIFIED WITH OPTIONAL POWER SELECTION SWITCH． UNDER NO CIRCUMSTANCES SHOULD A POWER SELECTION SWITCH BE ATTEMPTED ON FIG．1－a SERIES－CONNECTED COMPUTER－GRADE CAPACI－

TOR CIRCUIT．PLACING ONLY ONE CAPACITOR ACROSS 450 VOLTS DC WILL PRODUCE A DANGEROUS OVERLOAD OUT－ PUT AND CREATE A PTUN－ TIAL EXPLOSIVE COND TION IN THE CAPACITOR．

Trigger circuit board

The trigger circuit shown in Fig．1－c is simple with only 4 components．The PC board for the trigger cincuit is shown in Fig．4．Since the flashtube socket is on the component side of the circuit board，some minor dilliculty may be encountered in connecting the flash tube socket to the circuit connec－ tions $1,2,3$ ，and 4 ．All that is necessary to make the proper connections is to attach number 16 solid wires to the 4 tube socket pins and insert the other end of the wires in the corresponding
print hoard contact holes and solder. Firm mechanical connections must be made to the tube socket pins to prevent solder heat from breaking a solder-only connection.

To mount the trigger board to the housing's top, attach 4 stand-off terminals to top and solder stand-off pins through 4 corner holes of the trigger circuit board. TS1 and TS2 connect to the camera sync socket which consists of a standard ac connector, with either number 16 or 18 flexible, stranded wire. The camera sync socket is mounted on the housing's top and can be either a push-in, snap-lock, or screw-mounted socket. This location for the sync socket minimizes the number of connections between trigger circuit board and the power-capacitor bank and places the sync socket in the most advantageous position for use with an optical slave trigger.

Power input connections

Ordinarily, one would expect the power switch discussions to be along with the 117 -volt ac tripler circuit. However, because there is a potential shock hazard associated with the ac power switch, it is described separately. Only a double-pole doublethrow switch should be used in the ac power line. The ac line must be connected to either the two top or two bottom terminals of the switch with the power-capacitor bank connected to the center terminals of the switch and a jumper connected to the unused terminals. This connection, shown in Figs. l-a and 5, prevents voltage feedback through the switch to the ac plug terminals and eliminates a potential shock hazard. It also provides a capacitor discharge shunt when the switch is in the off position, to remove dangerous stored capacitor voltages.

Optical slave trigger

The most valuable accessory to electronic photoflash photography is the optical slave trigger for your photoflash (Fig. 6). It triggers the photoflash with the light from your camera mounted photoflash and eliminates the use of two sync cables. Figure 7 illustrates how the four components are assembled on the prongs of an ordinary ac plug and encapsulated in a clear plastic or epoxy resin. The General Electric C106B3 SCR is specified not only for the electrical specifications but for the anode terminal position opposite the gate and cathode terminals. This is most convenient for mounting the SCR on the prongs of the sync plug.
The light-sensitive device is a Na tional Semiconductors Ltd. type NSL-701-3 silicon photodiode. It consists of
three 0.1×0.2 in. silicon chips connected in series to provide sufficient voltage output to trigger the SCR when struck by the light from the master flashgun. The NSL-701-3 can be purchased for $\$ 6.00$ from National Semiconductors Ltd., 331 Cornelia Street. Plattsburgh, NY 12901.
(The NSL-701-3 is sold as an assembly of bare silicon chips. These are very fragile and easily damaged. If you wish, you can purchase a com-

FIG. 5-AC POWER SWITCH wiring.

FIG. 6-OPTICAL SLAVE TRIGGER CIR. CUIT.

FIG. 7-OPTICAL SLAVE TRIGGER component placement diagram.

CAPACITOR BANK CIRCUIT board can be seen from component side of board.
plete optical trigger-ready to plug into the flashgun from most photo equipment supply houses for approximately $\$ 15.00$. The device is the Wein Micro Slave.-Editor)

Final assembly

Upon completion of the powercapacitor bank and trigger circuit

REAR VIEW OF PHOTOFLASH unit mounted on tripod shows power cord and ac switch.
boards, the final mounting of components in the plastic housing is begun. Figure 8 shows the side view of the component mounting inside the canistor housing. The ac power switch is mounted on the bottom plate of the housing with the 117 volt ac line connected to the end terminals on the switch and a shorting jumper connected across the opposite end terminals (see Fig. 5). Connect a 10 -inch section of ac cord from the two center terminals of the switch and run it towards the top of the housing. Next, insert the power-capacitor bank circuit board to locate the tripod mounting position. The correct position for the tripod mount is slightly below the bottom of capacitor C1, with enough space below C 1 for adequate backplate support. The tripod socket can

If you select the variable－output circuit for your flashgun，you＇ll find a progressive－shorting switch al－ most impossible to obtain because it appears that they＇re now being made only on special order．

Do not be misled by the terms ＂shorting＂and＂non－shorting＂in switch catalogs．A shorting－type switch has its arm or wiper arranged so it establishes a new contact be－ fore breaking the old．In a non－ shorting switch，the wiper breaks contact with one terminal before it makes contact with the adjacent one．

A progressive－shorling switch has a long wiper that progressively con－ nects or shorts the fixed terminals until all are tied together．Your best chance at a suitable switch of this type is to salvage one from a
surplus radio transmitter or antenna tuning unit．Diagram a shows how to connect it．（I have a hunch that the burners on electric ranges have a similar switch so you might lóok into this．）

If you can＇t find a progressive－ shortirg switch，you can make an equivalent from by wiring a 4 －pole， 4－position rotary switch as in dia－ gram b．It should have ceramic wafers and contacts rated at at least 5 amps at 350 volts dc．

The DX－5 flash tube is rated at 150 watt－seconds maximum，How－ ever，the author assures us that he has not noticed any shortening of the tube life due to its operation at 200 watt－seconds．Furthermore，this tube is used in several commercial 200 we．tt－second flash guns．
－Editor

FIG．8－COMPONENT PLACEMENT DIAGRAM for the barebulb photoflash unit．

be made from a 1 －inch circle or square plate of aluminum or brass， $1 / 4$ inch thick and with a $1 / 4-20$ threa disd hole in the center point of the plate．Or， if you prefer，a tripod socket inay be purchased from your local camera store or a quick－release triped base is available from Edmund Scientific Co．． 101 East Gloucester Pike，Barrington， N．J．under catalog numbe 42941 ． With the tripod socket installed，wrap the capacitor bank，below th：print board，with plastic film or acetate sheet and tape securely．This wrapping offers additional electrical shielding and will contain capacitor elestrolyte should a capacitor rupture for any reason．

Insert the power－capacitor circuit into housing and firmly seat the pc board to housing sides．A small piece of tape is sufficient to secure th：entire assembly if the pc board has been accurately contoured to the housing＇s interior dimensions．Attach the trigger circuit connections and insent the top of the housing onto the housin？body． However，do not secure the toj to the body at this point．Insert the fash tube in the flash tube socket．
（continued on page 80）

Why a Sylvania home training program may be

your best investment for a rewarding career in electronics

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind - to give you the background you need to land the electronics job you really want!

AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania is the proven step-by-step method of home training that canhelp you learn the basics of electronics quickly and easily

CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that adds an extra dimension to AUTOTEXT. It's almost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician - all in an easy-to-understand, conversational tone

4 SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. You can start on a higher level without wasting time on work you already know.

PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

(HANDS-ON TRAINING

To give ractical application to your studies, a variety of valuable kits are included in many programs. In Sylvania s Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job

7 FCC LICENSE TRAINING MOHEY BACK AGREEMENT

Take Sylvania's Communications Career Frogram - or enter with advanced standing and prepare immediately for your 1st. 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures youof your money
back if you take, and fail to pass, the FCC examination taken vithin 6 months after completing the course.

8 CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any n"erest or finance charges

SEND Attached postice paio CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIJATION

Sylvanıa Technical Systems. Iric
If reply card is detached send this coupon

GTE SYIVANIA

THE LOW COST MINI-COMPUTER IS A reality today. Together with time-sharing systems, they are performing an increasing number of tasks in all types of applications.

However, the relatively high cost of terminals has slowed both the acceptance and the use of the computer in small businesses, homes, and schools. The MITS Comter 256 (CT256) computer terminal described here can be built for less than $1 / 2$ the cost of most terminals and offers many unusual features not found in terminals costing several times as much.

The terminals important features include:

A built in acoustic coupler making computer connection simpler and saving added cost.

An auto-transmit that allows transmitting data or program material to the computer from memory, line by line.

Complete cursor control by software as well as by manual control via the keyboard.

A tape recorder input/output jack to enable taping of frequency shift keyed (FSK) tones during telephone connection to a computer. This gives virtually unlimited memory capability. Almost any type of tape recorder may be used.

A 32-character Burroughs display with a soft orange, highly legible readout.

Standard ASCIII encoded keyboard with TTY-33 format.

Internal memory capability of 256 characters per page and up to 4 pages of memory.

Automatic page change at the end

EXCLUSIVE!

First Computer

of each page for a total of 1024 character storage for a 4-page unit.

Flexible power requirements. Operable from line voltage of 100 to 130 volts or 200 to 260 volts.

A 25 pin imput/output accessory jack for hardwire computer connection and add-on accessories.

Data flow in the terminal

The block diagram of the Comter 256 (Fig. 1) represents considerable digital circuitry (91 logic IC's in a 4 page unit). The data path starts at the keyboard. When a character key is depressed, the character is encoded into a 7-bit binary code and is sent in parallel form on 7 lines to the UART (Universal Asyncronous Receiver-Transmitter-a 40-pin MOS chip) which converts the character data to serial information. The serial data is sent to the FSK modulator which converts a binary 1 to 1270 Hz and a binary 0 to 1070 Hz .

These tones are transmitted from the acoustic coupler to the computer, via the telephone lines. The computer processes the data and returns it back over the telephone wires to the terminal at a different frequency (binary $1=2225 \mathrm{~Hz}$, binary $0=2025 \mathrm{~Hz}$). The data is fed to the acoustic coupler

You Build

> This is a special report terminal in kit form. It a computer directly or via
where the tones are amplified, filtered and demodulated back into serial binary coding.

From the demodulator, the serial data goes to the UART and is converted to parallel form where it waits to be loaded into memory. When a data available signal from the UART coincides with the 32 nd character display time for the self-scan (right hand end of display), the first 6 bits of the character are entered into memory (the seventh bit is not used in the CT 256 memory) and the data position is automatically moved one position to the left.

The self-scan display is connected to the memory so that as a character is entered into memory it is simultaneously displayed along with the other characters in memory. This process is repeated for every character

POWER SUPPLY
+260 AT 25 mA
+5
+5
+1 AT 1 A
-10
AT 300 mA
-12

Terminal From A Kit

on a 4－page computer can be connected to telephone lines．

by THOMAS W．DURSTON

transmitted from the keyboard，plus the computer can also transmit its own characters to the terminal as the soft－ ware requires．

How it works

The most important single circuit in the CT256 is the clock oscillator．It is a $2-\mathrm{MHz}$ crystal oscillator that pro－ vides the time base for the logic，and is also used in the modulator of the acoustic coupler to provide the FSK tones．A crystal oscillator was chosen for its stability．The $2-\mathrm{MHz}$ clock is divided down to provide $1 \mathrm{MHz}, 62.5$ kHz ．and 15.625 kHz for logic time base．It is also used to determine baud rate（data transmission rate）for the UART．The baud－rate switch selects either 1760 Hz （ 110 baud X10）or $4800 \mathrm{~Hz} \mathrm{(} 300$ baud X16）for the UART clock by setting a program－ mable counter to divide the $2-\mathrm{MHz}$ clock by 1136 or 416 respectively．The modulator in the acoustic coupler works in a similar manner．Instead of setting a switch to set a programmable counter to divide by different rates，it uses the binary logic 1 or 0 of the data to derive the two divide rates．

Starting with the data path，the key－ board encodes the character by feed－ ing a $15-\mathrm{kHz}$ signal to a 4－bit binary counter that is connected to a 4 －to－ 16 line decoder．The character keys are connected to the 16 lines according to the first 4 bits determined by the ASCII code．When a key switch is closed，and the line it＇s connected to is strobed，the 4 －bit counter is halted． The 4 －bit count where the counter stopped is the first 4 bits of the 7 －bit ASCII code and the other 3 bits are encoded by a series of logic gates． After a $30-\mathrm{ms}$ debounce period，a load signal is sent to the UART，where the parallel 7 －bit character code is en－ tered into registers and transmitted out serially at the selected baud rate．The serial data is sent to the modulator where it is converted into audio fre－

quencies as described before and is fed into a speaker which transmits the FSK audio to the transmitter of the telephone handset．

When the computer returns the data or originates its own，it is received as a $2225-\mathrm{Hz}$ or $2025-\mathrm{Hz}$ tone．The sig－ nal is picked up by a ceramic micro－ phone adjacent to the receiver in the telephone handset，and is amplified and converted to a low－impedance out－ put by a JFET－NPN transistor circuit． This low－impedance circuit feeds the tape cutput and a two－stage op－amp active filter．

The two－stage filter removes noise and irterference and provides a gain of about 400 ．The filter output feeds a carrier detector circuit that turns on the carrier LED，enables the transmit circuit，and enables the FSK demod－ ulator which consists of an XR210 IC phase locked loop．The output of the op－amp filter also feeds the XR210 and the signal is demodulated into serial binary form．This serial binary data is fed into the UART and is sampled at the set baud rate．If the serial data is valid，it is converted into a 7 －bit parallel format corresponding to the ASCII code for the character received．

The UART also indicates that it has new data available．Meanwhile，the receive decoding determines if the new 7－bit character is a display character or a control character．If it is a display character，it is allowed to be entered
into memory，if it is a control charac－ ter（bell signal，cursor conril char； see table of control characters＂，the re－ ceive decoder inhibits memory loading and initiates the necessary ope ation．

Memory operation

Probably the most involved eircuitry in the CT256 centers arounc 1 e 5 －bit （32 count）display counter a ald 4－bit （ 16 count）X－Y memory address counters．The X－Y memory address counters are both 4－bit（ 16 cos nt）up－ down．presettable counters，making a total combination of 256 aldresses （ 16 X by 16 Y ）．For referen．e sake， the Y addresses are called lines and X addresses are called charecter posi－ tions（see Fig． $2 \& 3$ ）．The start of the page is called＂home＂（set：Fig．4） and has address \emptyset ，（line ℓ ，position （1）．When the black＂ H ＂key（home） is depressed，it homes the dat：to the cursor position（right hand en．l of dis－ play－32nd character）and r：sults in the X－Y address counters bein at \emptyset, \emptyset during the 32 nd character display time．

The cursor position is very impor－ tant because it is during this 32nd－ character display time that；$n: w$ data is entered into memory，data iv shifted right or left in the display，data is homed，memory is cleared，ind many other timing chains are based．

FIG. 2-MEMORY FORMAT. The 6-bit character is entered into memory in ASC11 code. The memory location is selected in accordance with the respective position on the page (line and character position.)

At the time when the UART indicates new data available and the 32 nd character display time starts, the read/ write logic generates a write pulse for the memory. The first 6 bits of data at the output of the UART are then written into 6 RAMs (Random Access Memory) at that address. The write pulse also goes to the cursor control logic, where, upon completion of the write pulse, the X -address is incremented one position, shifting the data one position to the left on the display. The write pulse also triggers a circuit that resets the data available line from the UART.

The clear circuit, activated by either pressing the black "C" key or receiving a control "L", enters the ASCII code for a blank into all 256 positions of memory for that page. It works by holding the write circuit on and forcing the data input lines to the memory to coding for a blank. This only takes place during the 32ndcharacter display time during which it "homes" the X \& Y counters and advances the X -counter 256 positions (one complete page) at a $1-\mathrm{MHz}$ rate.

The auto transmit circuit works by depressing the black "T" key which activates logic that switches the transmit data lines from the keyboard to the data output lines from the memory. Whatever character is in the cursor position of the display is transmitted out to the computer. As that character is received back, it is re-written into the same position in memory, the data is shifted left one position and the next character in memory is transmitted.

Since the memory only stores the first 6 bits of the 7 -bit ASCII code, the 7th bit must be derived by logic gating.

This is one reason why the CT256 cannot auto-transmit control characters.

The 7th bit cannot be derived for control characters, and since the memory does not receive and store them anyway, they have to be transmitted manually via the keyboard. To allow entry of control characters such as carriage return, the detection of the @ symbol will cause auto-transmit to stop and the desired character may be manually transmitted. The @ symbol is detected in the cursor position and auto transmit cannot take place unless it is shifted out by manually entering a new character.

The address function is initiated by pressing the black "A" key or by receiving a control "O". It sets up the receiving decoding to accept the next two characters and use their first four-

FIG. 4-PAGE FORMAT shows how the page is displayed on the Self Scan display. Each line of the page is 16 characters long and the page is displayed one line at a time.
ter's ASCII code. The second character received selects the position in the line (1-16) by setting the X address counter equal to the first 4 bits of that character's ASCII code. These two characters are used only for address location and are not loaded into memory. For Y (line) and \mathbf{X} (position) identification see Fig. 3.

Page circuitry

The page control circuit for a multi page unit consists of two circuits for each page. The first set of circuits enables each set of 6 RAM's, making them active for the page selected; the second set of circuits reduces power to the unused pages to standby levels, reducing current drain by 75%.

The operation of the page control circuit is determined by the setting of the page switch. In manual, the page can only be changed by depressing the black " P " key. Pressing the black " P "
(continued on page 91)

Digitel Multimeter Rqundup

The digital multimeter has finally moved out of the laboratory and onto the service bench. Here's a rundown on those that sell for $\$ 300$ or less.

by ROBERT F. SCOTT
TECHNICAL EDITOR

FOR yEARS THE MULTIMETER HAS BEEN the principal-and sometimes the only -test instrument used by the service technician for voltage, current and resistance measurements. Many oldtimers have an almost continuous squint acquired from peering at a meter and trying to read the voltage indicated by a pointer that has banged against its pins once-too-many times.

Digital meters--presenting the metered quantities in large easy-to-read numbers-have been used in laboratories, industrial plants, etc. for years but have just recently been developed to the point that they are priced within the reach of electronic service technicians and many experimenters.

The digital multimeter, often called a dmm or dvm, offers many advantages to the busy service technician. For example, in some dmm's, range
selection, polarity indication and decimal point placement are performed automatically. The indications are often large erough to be easily read from up to 20 feet away. Parallex does not exist so it cannot affect reading accuracy. The accuracy of the instrument is much greater than a typical analog vom or vtvm.

There are quite a few new dmm's in the $\$ 300$ and under class that will appeal to the service technician and advanced experimenter. We are going to discuss the features and operating principles of the dmm and present the pertinert specifications of the instruments you should consider before making your selection.

How the dmm works

The analog instrument takes the meterec quantity-voltage, current or

FIG. 1-BLOCK DIAGRAM OF BALLANTINE MODEL $\mathbf{3 / 2 4}$ digital multimeter. Note the basic similarities between this and an analog multimeter.
resistance-and converts it into a voltage that is read on the meter in the proper values and terms. A precision voltage divider attenuates the tes: voltage so it is within the basic voltage range of the meter movement The dmm is similar except that the m Jvingcoil meter is replaced by an a alog-to-digital converter whose cutput drives a digital display or readout.

Compare the block diagram of the Ballantine model $3 / 24 \mathrm{dmm}$ (Fig. 1) with that of your Simpson 260, Triplett 630 or similar instrument and you'll see the resemblance. The dmm is basically a dc instrument with a scaled-down portion of the input voltage applied to the display through the analog-digital (A-D) converter. Resistance is measured by passing a constant current through the un snown resistor and measuring the voltage drop across it. Current is mete ed by measuring the voltage drop across a current shunt. When measuring ac voltage or current, a rectifier is inserted between the input attenuator and the A-D converter.

The A-D converter is the in erface between the analog dc input and the digital display device. There are a number of different ways of cunverting an analog dc voltage to a digital value. Among these are: vollate-controlled oscillator, single-ramp and double-ramp integration, charge balancing and successive approxirnation. All have advantages and disadvintages that affect accuracy, resolution, and the rate at which the display can follow or track a changing input signal. The study of A-D converters as applied to dmm's is quite interesti g ; but is beyond the scope of this article. If enough of you are interested, we'll cover A-D converters in a future issue.

Displays

The three types of displays in com-
mon use are LED's in both 5×7 dot matrix arrays and seven-segment arrangements; liquid crystals in both transmissive and reflective types and gas-discharge tubes such as the Nixie. Each type has its advantages and disadvantages.

Gas-discharge tubes generally offer brighter and larger digits that can be read from greater distances. However, they require a relatively high excitation voltage and their current drain is high enough to restrict their use to line-operated bench-type instruments. LED's are the most common type of display. They are easy to read in either format; are high-efficiency devices that operate from approximately 1.5 volt and draw about 25 mA per segment. When the display is strobed, the average power is low and long life can be expected from high-quality dry cells.

There are reports that some bench technicians complain of eye strain and fatigue after long hours of reading I.ED and gas-discharge displays. Too, both types tend to wash-out when viewed in bright sunlight.

Liquid crystals are the new-comer to the display field and seem to be the ideal in terms of power consumption. A liquid-crystal display draws only microwatts while an equivalent LED display will draw many milliwatts. This type of display is made in both transmissive and reflective types. The former must be backlighted which compromises the power

TWENTY TWO RANGES, four each for dc and ac volts and current and six for resistance are included on the Data Precision model 134. Its $31 / 2$-digit, 7 segment gas-discharge display incorporates 200% over-range and has a reading rate of approximately 1 per second. Voltages up to 1.5 kV rms; current

to 2 amps and resistance to 20 megs can be read. At 100% overrange, the reading is 1999. Readings above 1999 are indicated by the lighted " 1 " and selected decimal point. The other three digits are blanked.

The least significant digits are 1, 10, and 100 mV and 1 V on the voltage ranges; $1,10,100 \mu \mathrm{~A}$ and 1 mA on current; and $0.1,1,10,100,1 \mathrm{~K}$ and 10 K in the resistance mode.

Optional isolation probe has switchable 100 K isolating resistor. High-voltage probe extends range to $30 \mathrm{kV} .31 / 2$ $\times 71 / 8 \times 87 / 8$ in. $41 / 4$ lbs. $\$ 189$.
saving gained through its use. The re-flective-type display can be used in areas where high ambient light and widest angular visibility are not needed.

Battery operation

Most dmm's are line-operated with built-in batteries. Some have throwaway dry cells and others have rechargeable batteries, either installed or in optional battery packs. If you want a battery-only instrument, be sure that the batteries will last long enough for a couple of days use.

LINE-OPERATED VERSION of the model 21 is Data Technology's model 20. Ranges, functions and specifications are the same as in the hand-held model 21.

Options include single and side-by-side rack mounts, carrying case, high-voltage probe; 100-, 115 - and 230 -volts ac line operation and IC sockets for quick component replacement, $2.5 \times 6.25 \times 9 \mathrm{in}$., 2.3 Ibs. \$269.

FOUR RANGES and cold-cathode readouts and indicators are used in the Heathkit IM-1202 portable digital multimeter. This $21 / 2$-digit instrument is well within the reach of hams and beginning electronics experimenters while meeting the specifications required for many operations on the radio/TV service bench.

Its ranges are: 2, 20, 200 and 1000 $\mathrm{Vdc} ; 2,20,200$ and $700 \mathrm{Vrms}(25 \mathrm{~Hz}$ to 10 kHz) ; 2, 20, 200 and 2000 mA dc and $\mathrm{ac} ; 200,2000,200,000 \mathrm{ohms}$ and 2 megs. Overrange is 25% on all ranges-within maximum limits. Resolution on the low-

est ranges is $10 \mathrm{mV}, 10 \mu \mathrm{~A}$ and 1 ohm. Accuracy (full scale ± 1 digit): de volts $\pm 1 \%$; dc and ac current and ac volts $\pm 1.5 \%$; ohms $\pm 2 \%$.

Input impedance is 1 megohm on all voltage ranges. Power requirements $110-130$ or $220-260 \mathrm{Vac}, 50 / 60 \mathrm{~Hz} .73 / 4$ $\times 53 / 16 \times 31 / 8$ in., $21 / 2$ lbs. $\$ 79.95$.

WORLD'S SMALLEST is the claim made for the Non-Linear Systems model LM-4, a full 4 -digit instrument with full-scale count of 10,000 on $0.31-\mathrm{in}$. red LED display elements. It measures ac and dc volts from $100 \mu \mathrm{~V}$ to 500 V and resistances from 0.1 ohm to 10 megohms and operates from the 117-volt line.

The case is $13 / 4$ inches high, $21 / 2$ inches wide and $31 / 4$ inches deep. Its carrying handle also serves as an adjustable tilt stand. $\$ 187$.

PLUG-IN BOARDS, IC'S AND readouts for easy replacement are features of the DigiTec model 2110 and 2120. Internal rechargeable batteries facilitate operation independent of power lines. A built-in automatic charger keeps the batteries charged as long as the dmm is connected to the power line.

Dc voltage ranges extend from 199.9 mV to 1000 volts full scale with basic accuracy of 0.1% of the reading. Ac voltage can be measured from 1.999 to 500 volts (750 volts on the 2120) with

accuracy of 0.5% of the reading. Basic accuracy of 0.5% of the reading is available on five resistance ranges extending from 199.9 ohms to 19.99 megs. A zero control permits nulling test-lead resistance.

Functions are selected by pushbuttons while ranges are changed with a rotary switch that includes a BATT CHK position. Input impedance is 10 megs on dcV; 1 meg shunted by 10 pF on acV. The $31 / 2$-digit display uses 0.3 -in. high LED numeric indicators. Overrange blanks all numerals except the overrange " 1 ", polarity sign and decimal point.

Gulton R-200 batteries operate the model 2110 a minimum of 8 hours and the 21205 hours in continuous operation. Recharging takes 16 hours after full discharge.

The 2120 (not shown) has all the features of the 2110 plus five ac and dc current ranges extending in decades from $1.999 \mu \mathrm{~A}$ to 1.999 A .

Power requirements $115 / 230 \mathrm{~V}$, $50-$ 400 Hz ; 2.5 W for the 2110 and 5 W for the 2120 . Size $2.43 \times 7.25 \times 7.95$ in., 2 lbs. less batteries. Model 2110 \$219, $2120 \$ 275$.

AUTOMATICALLY POSITIONED deci－ mal point， 100% overrange capability and fool－proof out－of－range indications are features of the $B \& K$ Precision model 281 ．On this $21 / 4$－digit instrument， out－of－range is indicated when the first digit remains on while the second and third digits are off．

Ac and dc voltages are measured on $100 \mathrm{mV}, 1.00,10.0,100 \mathrm{~V}$ and 1.00 kV ranges．Accuracy is $\pm 1 \%$ of reading

± 1 digit on dc and $\pm 1.5 \%$ of reading ± 1 digit on acV．Current measurements （ac and dc）are in $100 \mu \mathrm{~A}, 1.00,10.0$ and 100 mA and 1.00 amp ranges with accuracy of $\pm 1.5 \%$ of reading ± 1 digit． Frequency response is 20 Hz to 1 kHz ．

Seven decade resistance ranges（10 ohms to 10.0 megohms）provide ac－ curary 2% of range to 1 megohm and 3% of range on 10 megohms．The in－ strument provides 100% overrange on all functions．

The 281 operates from $117 \mathrm{Vac}, 15 \mathrm{~W}$ ． $31 / 2 \times 7 \times 9 \mathrm{in} .5 \mathrm{lbs} . \$ 170.00$ ．

CAPACITANCE READING CAPABILITY in a hand－held dmm is a unique feature of the Data Technology model 21．It is a $31 / 2$－digit instrument powered by four internal rechargeable batteries that pro－ vide up to several weeks of intermittent usage．It comes with a plug－in battery charger that can be specified for 100－， 115 －or 230 －volt operation．Battery charge life is extended by the use of PUSH－TO－READ switches．

Voltage ranges are $2,20,200$ ，and 1000 volts dc and peak ac with $1-\mathrm{mV}$ resolution．Resistance ranges are 2 K ， $20 \mathrm{~K}, 200 \mathrm{~K}$ and 2 megohms．Capacitance is read in four ranges from 2 to 2000 nF （． 002 to $2.0 \mu \mathrm{~F}$ ）with resolutions of 1,10 ， 100 and 1000 pF．
Accuracy on resistance and capaci－ tance is $\pm 0.15 \%$ of reading $+0.05 \%$ of full scale；$\pm 0.1 \%$ of reading $+0.05 \%$ of full scale on dcV and 0.5% or reading $+0.1 \%$ of full scale（ 50 to 500 Hz ）．

The model 21 slips into a pocket or into a handy carrying case that clips onto a belt．It is $6.8 \times 3.25 \times 1.75 \mathrm{in}$ ． and weighs only 12 oz ．$\$ 269$ ．

Reading specifications

The $1 / 2$ digit：Dmm＇s are generally specified by the number of digits（nu－ meral indicators）in the display．Each digit is capable of displaying any nu－ meral from 0 to 9 ．A 3－digit instru－ ment will have a maximum reading of 999 anc a minimum of .001 ．If it has $1,10,100$ and 1000 volt ranges，it reads maximums of $.999,9.99,99.9$ and 999 volts，respectively．

Each digit added to a display in－ creases sircuit complexity and cost pro－ portionately．Manufacturers found that they could improve the resolution（the smallest change in the quantity being

NOISE COMPONENTS on the signal be－ ing metered are removed t_{j} a two－pole filter before being processed by the A／D converter in the Fluke model 8000A． It is a compact $31 / 2$－digit instrument featuring pushbutton range and function selection，automatic polarity switching， a self－locating decimal point and self－ zeroing to eliminate offset uncertainties． The basic dmm is designed around ± 0.2 and $\pm 2.0 \mathrm{Vdc}$ and has twenty six ranges and six functions．

The 9000 A measures ac and dc volt－

ages from $100 \mu V$ to $1199 V$ ；current from 100 mA to 1.99 A ；and resistance from 1100 milliohms to 19.99 megs．Dc voltage and current are measured with accuracy of $\pm 0.1 \%$ of reading +1 digit and $\pm 0.3 \%$ of reading +1 digit，respec－ tively．On ac（ 45 Hz to 10 kHz ）voltage accuracy is $\pm 0.5 \%$ of reading +2 digits．Surrent measurements are $\pm 1 \%$ of reading +2 digits（except on 2000 mA where frequency is limited to 3 kHz ）．In the range of 10 kHz to 20 kHz ， voltage accuracy is $\pm 1 \%$ of reading +2 dijits．Resistance accuracy is \pm 0.2% of reading +1 digit on all ranges except $\pm 0.5 \%$ of reading +1 digit on 20－mec range．

Inpu：impedance is 10 megs on dcV and 10 megs shunted by 100 pF on acV ． Optional probes extend measurement capabilities to $30 \mathrm{kV} \mathrm{dc}, 200 \mathrm{amps} \mathrm{dc}$ and to 500 MHz on acV ．

The Fluke dmm is available in some－ what more expensive options．The 8000A－01 includes an optional recharge－ able battery pack providing over 8 hours of portable operation．The 8000A－02 has a digital printer output；the -05 features a 10－amp current range and the－06 has low ohms（ 2 and 20 ohms ）ranges．

The 8000A operates from 100－115 and $230 \mathrm{Vac}, 50-400 \mathrm{~Hz}, 2 \mathrm{~W} .2 .52 \times$ 8.55×9.9 in．， 2.75 lbs．$\$ 299$.
measured that will produce a change in the display reading）of their iostru－ ments at little increase in circuil com－ plexity or cost by adding a lef－hand digit that displays only the nt neral ＂1．＂This＂ 1 ＂is called the h $11-$－digit． Thus，a $31 / 2$－digit instrument can dis－ play 1999.

Overrange is an extension of the half－digit technology and is a means of extending the readings beyond what would be full－scale on an analog in－ strument．Most multimete have ranges of $1,10,100$ and 1000 or similar decades．Now，supposє t at we want to measure the precise villiage of a standard 1.5 －volt dry cell．Using an analog instrument，we would have to use the 10 －volt range and would not be able to read the voltage wi：h any degree of accuracy．With a cm m ，we would use the 1 －volt range．T ie ap－ plied voltage would be greate－than the range selected．The instiument would sense an over－range；the half－ digit＂ 1 ＂would light and the voltage

TRUE PORTABILITY AND LAB preci－ sion are claimed for the $41 / 2$－cligit Data Precision model 245．It is about the size of an Instamatic camera and eren in－ cludes a wrist strap．Voltage，current and resistance are read on 21 ranges with 100% overrange．It comes with carrying case，wrist strap，tes leads and a battery module that incluyes re－ chargeable batteries，battery sharger and line cord．

When operated on the ac line，the batteries remain on charge wrether the dmm is turned on or off．When discon－ nected from the power line for fortable or field use，the batteries last at least 6 hours before recharging is required． Recharging takes about 12 heurs．

Ranges：Dc volts 1.000 to 1050 with 100\％overrange．Input impeclance 10 megs on three highest rancpes；over 1000 megs on 1.000 －volt range．On ac， the ranges are the same $i s$ on dc

except on the $1-k V$ step where over－ range voltage is limited to 502 volts． Ac input impedance is 1 megohm shunted by 50 pF or less．Maxirt um rms input is $500 \mathrm{~V}, 30 \mathrm{~Hz}$ to 10 kHz ，above 10 kHz it decreases linearly to ：J0 V at 50 kHz ．Settling time（to setthe within $\pm 0.1 \%$ of final reading with full－scale input）is 2.5 sec ．

Current（ac and dc） 1 mA tc 1 A in four decade ranges with 100° ：over－ range．Resistance： 1 K to 10 megs in five decade steps．Least significant digit on lowest range is 1 milliohm．Naximum open－circuit voltage is 3.5 V ．

Operates from 105－125－vo＇ts 47－63 $\mathrm{Hz} .51 / 2 \times 13 / 4 \times 31 / 2$ in． 1.3 Its．$\$ 295$.
could be read with three-place accuracy - 1.470 for example-an impossibility with an analog vom.

Accuracy of an analog vom is usually specified as a percentage of the full-scale reading-generally 2 to 3%. Parallax, pivot wear, needle unbalance and other deficiencies of the movingcoil meter can further degrade accuracy. On the other hand, the accuracy of a dmm is specified as \pm a percentage of the reading plus 1 digit. A reading of 1.000 volt would have a possible error of $(1.000 \times .001)+1$

FULL 3-DIGIT LED DISPLAY is used on the Ballantine $3 / 24 \mathrm{dmm}$. Two rotary panel switches provide 25 operating ranges including one for battery check. A flashing left-hand digit and an indication of less than 200 indicate a reliable reading between 1000 and 1200. Automatic polarity indication when measuring dc voltages and current. Ranges are: $1000 \mathrm{mV}, 10,100$ and $1000 \mathrm{Vdc} ; 100$ and $1000 \mu \mathrm{~A}, 10,100$ and 1000 mA dc and $\mathrm{ac} ; 1000 \mathrm{mV}, 10,100$ and $500 \mathrm{Vac} ; 100$, 1000, 10,000, 100,000 ohms and 1 and 10 megohms.

Accuracy is $\pm 0.2 \%$ of reading +1 digit on $1000 \mathrm{mV} \mathrm{dc}, \pm 0.5 \%$ of reading +1 digit on $10,100,1000 \mathrm{Vdc}$ and the five current ranges; $\pm 1 \%$ of reading +2 digits on $\mathrm{acV} ; \pm 1.5 \%$ of reading +2 digits on ac current and $\pm 1 \%$ of reading +1 digit on all resistance ranges.

The optional 10850A peak detector can be used to measure sinewaves to beyond 500 MHz . Maximum input signal is 30 Vac . The optional 10800 HV probe measures dc up to 30 kV .

The $3 / 24$ operates from any one of four dc power sources: NEDA type 1603 dry cell battery, any external 6.2-10volt source delivering 50 mA , a voltagedropping network or the Ballantine 32401 dc adapter permitting operation from 9.8 to 34 volts dc at 10 to 100 mA , depending on the input voltage and setting of the display brightness control. Ac operation is from the optional 32402A plug-mounted supply requiring 100 to 135 Vac at 3 watts. The unit stores in the dmm's battery compartment. A 32403A rechargeable NiCad battery supply powers the dmm for 16 hours and incorporates a charger that restores full charge in 16 hours. Fits in battery compartment and operates from 100-125 and $200-250 \mathrm{Vac}, 48-420 \mathrm{~Hz}$.

The $3 / 24$ is $5.5 \times 2.4 \times 7.1 \mathrm{in}$., and weighs 2 lbs. with battery. $\$ 195$.
or $\pm .002$ volt.
Auto-ranging is a feature of some dmm's. The operator selects the desired function (volts, current, resistance, etc.) and connects the test leads to the point or component being mea-

ANALOG OUTPUT AND DISPLAY are features of the Simpson 360 that are unique in dmm's in its class. The analog output terminals of the 360 provide 1 Vdc (open-circuit) corresponding to a digital reading of 1000 . This analog signal voltage can be used to drive a graphic recorder.
The analog meter is a zero-center instrument that is handy for peaking, nulling and making other adjustments on circuits evolving rapidly varying signals.
The 360 is a $31 / 2$-digit instrument employing 7 -segment LED display elements. It can operate from 117 or $240 \mathrm{Vac}, 50$ 400 Hz lines. For complete isolation from power lines or in cases where ac power is not available, rechargeable NiCad batteries provide up to five hours

of continuous operation. Recharging is automatic when the line cord is plugged in and the function selector is in the BATT CHRG ONLY position. A LED on the panel shows when the battery is being charged.
The function selector switch has four positions: OFF disconnects all power from the internal circuits; BATT CHRG ONLY fully charges the battery in 16 hours; DC OHMS connects the appropriate input jacks for measuring dc current, voltage and resistance; depending on the setting of the range selector. $A C$ connects the appropriate panel jacks to the ac voltage or current metering circuits selected by the range switch.
Voltage ranges are from 200 mV to 1000 Vdc and 600 Vac . The $0-200$ and $0-2000$-ohm resistance ranges are 'low power' with a maximum 150 mV opencircuit. The other ranges are $20 \mathrm{~K}, 200 \mathrm{~K}$, 2 megs and 20 megs full scale.

Input jacks- $20 \mu \mathrm{~A}, 200 \mu \mathrm{~A}, 2 \mathrm{~A}$ and 10 A-are used for current measurements with full scale values selected by the range switch with accuracy $\pm 0.5 \%$ of the reading +1 digit (except on 2 A and 10 A ranges where accuracy is $\pm 1 \%$ of reading +1 digit). Six ac ranges cover from $200 \mu \mathrm{~A}$ to 10 A . Accuracy $\pm 1.0 \%$ of the reading +1 digit through $200 \mathrm{~mA} ; \pm 2.0 \%$ of reading +2 digits on 2 - and $10-\mathrm{amp}$ ranges.

Size $7.2 \times 5.4 \times 3.75 \mathrm{in} ., 4.5 \mathrm{lbs}$. \$295.

CONDUCTANCE AND LEAKAGE current are two unique features of the Tekelec 357 Multex dmm. Like the TA 355 and TA 356, the TA 357 has optional transmissive or reflective liquid-crystal readouts, ZERO control and Touch-nHold probe. There are six decade voltage ranges covering 0.1999 volt to 19.99 kV . Input impedance is 10 megohms on

the first three ranges and 1000 megohms on the 1.999 - and $19.00-\mathrm{kV}$ ranges with the 100:1 HV probe. An ON-OFF switch displays the ac line voltage when the ac-volts function is selected.

Current (ac and dc) is metered in $0.1999,1.999,19.99$ and 199.9 mA ranges. Conductance is mhos is measured in four ranges: $2 \times 10^{-8}, 2 \times 10^{-9}$, 20×10^{-6} and 200×10^{-6}. Leakage current ranges are $10 \mathrm{pA}, 100 \mathrm{pA}$ and 1 nA . Size $23 / 8 \times 51 / 4 \times 91 / 2 \mathrm{in}$. $\$ 179$.

ITS $3 \mathbf{1} / 2$-DIGIT DISPLAY makes the B \& K Precision model 282 the "Big Brother" of the 281. It reads voltages in four decade ranges from 1.000 to 1000 volts ac and dc. The 100\% overrange feature permits maximum readings of 1.999, 19.99, 199.9 and 1999 on all ranges. On the $1-, 10-$, and $100-\mathrm{Vdc}$ ranges accuracy is $\pm 0.5 \%$ of the reading ± 1 digit and $\pm 1.0 \%$ of the reading ± 1 digit on the $1-\mathrm{kV}$ range.

On ac volts (50 to 200 Hz), accuracy is $\pm 1.0 \%$ of the reading ± 1 digit on the three lowest readings and $\pm 1.5 \%$ of the reading ± 1 digit on the $1-\mathrm{kV}$ range. Accuracy (50 to 1000 Hz) is $\pm 1 \%$ on the $1-, 10-$ and $100-\mathrm{V}$ ranges and $\pm 1.5 \%$ on

the $1.5-\mathrm{kV}$ range. Response is $\pm 0.5 \mathrm{~dB}$, 1000 to $10,000 \mathrm{~Hz}$ on the 1 - and 10 -volt ranges; $\pm 1 \mathrm{~dB}, 1000-10,000 \mathrm{~Hz}$ on $100-$ V range and 1000 to 2000 Hz at 1 kV .

Resistance is measured in six decades from 100 ohms to 10 megohms. Accuracy is $\pm 1 \%$ of reading ± 1 digit, 100 ohms to 1 megohm; $\pm 2 \%$ of reading on $10-\mathrm{meg}$ range.

The test probe has a selectable 100 K resistor that is used in making measurements in high-impedance and high-frequency circuits. This resistor, in series with the $10-\mathrm{meg}$ internal voltage divider causes a -1% error in the reading. When precision is needed, increase the meter reading by 1%

Operates from $105-125 \mathrm{Vac}, 50-60 \mathrm{~Hz}$. $31 / 2 \times 7 \times 9 \mathrm{in} ., 3 \mathrm{lbs} . \$ 200$.

BUILT IN A PROBE，the Hewlett－Packard model 970A has automatic ranging，zero and polarity indication．

The voltmeter ranges are $0.1,1.0,10$ ， 100 and 1000 volts with 500 V dc and ac maximum input．On de the accuracy is $\pm 0.7 \%$ of the reading $+0.02 \%$ of the range．On ac，accuracy（ 1 V to 1 kV ）is $\pm 2 \%$ of the reading $+0.5 \%$ of the range —from 45 Hz to 1 kHz ．From 1 to 3.5

kHz ，accuracy is $\pm 3 \%$ of reading $+0.5 \%$ of range．Five ohmmeter ranges cover from 1 K to 10 megs with accuracy of $\pm 1.5 \%$ of reading $+0.2 \%$ of range．
Accessories include 5 －range dc and ac ammeter adapters measuring 100 $\mu \mathrm{A}$ to 1 A fullrange，an if probe that adds 100 kHz to 500 MHz to the ac measurement range of the 970A．

Size $61 / 2 \times 13 / 4 \times 11 / 4$ in． 3 lbs．$\$ 275$ ．

FIVE MODELS in the Weston series 4400 of dmm＇s are within the $\$ 300$ limit set for this listing．They vary in accu－ racy，number of ranges，functions and the type of operation．They are all $31 / 2-$ digit instruments．The 4440,4442 （shown）and 4443 are self－contained portables with rechargeable battery packs that deliver up to twelve hours of continuous power．The 4448 and 4449 are for use on $117 \mathrm{Vac}, 60-\mathrm{Hz}$ only．

Models 4442 and 4449 have twenty ranges covering from 20 mV to 1 kV ac and dc， 200 ohms to 20 megs plus 199.9

$\mu \mathrm{A}$ and 1.999 mA dc and ac current ranges．The 4443 measures only dc volts and current and resistance in the same ranges as the other instruments in the series．

All instruments in the 4400 Series are $2.25 \times 5.45 \times 7 \mathrm{in}$ ．and weigh less than 2.5 lbs．Prices range from $\$ 220$ for the model 4448 to $\$ 275$ for the 4442 ．
sured．The dmm automatically selects the correct range and positions the decimal point to give the most ac－ curate reading．

Now that we＇ve had a look at the dmm．let＇s take a look at the pertinent specifications of dmm＇s in the $\$ 300$ and under range．

MANUFACTURERS

Ballantine Laboratories
PO Box 97
Boonton，NJ 07005
B \＆K，Div．of Dynascan Corp． 1801 W．Belle Plaine Ave． Chicago，IL 60613

LIQUID－CRYSTAL DISPLAYS using field－ effect 7 －segment devices are featured in the Takelec model TA 355，TA 356 and TA 357 dmm＇s．The TA 355 bench model and the TA 356 portable dmm have five functions， 25 ranges with pushbutton range and function selectors．Sensitivity is $100 \mu \mathrm{~V}$ on ac and dc voltage， 100 nA ac and dc and 0.1 ohm．

The standard displays are transmis－ sive types－black on a white back－ ground．The optional reflective displays are black on a grey－green background． The ZERO control is a screwdriver ad－ justment on the 355 and a thumb－wheel control on the 356．Range－to－range shift is 1 digit，maximum．The reading rate on the portable is fixed at 3 per second．

A 3 －position rocker switch on the 355 selects 3 readings／second， 1 reading／ second or＂hold＂the reading indefi－ nitel：

The TA 356 operates from internal re－ chargeable NiCad batteries with a life of about 6 hours per charge with the transmissive display and $8-10$ hours with the reflective display．The separate power supply／battery charger is stan－ dard for either $117 \mathrm{~V}, 60 \mathrm{~Hz}$ or 230 V ， 50 Hz ．

The TA 355 can be specified to op－ erate from either $117 \mathrm{Vac}, 60 \mathrm{~Hz}$ or 230 $\mathrm{Vac}, 50 \mathrm{~Hz}$ ．Interchangeable NiCad bat－ teries and charger／ac supply are op－ tional．

Dc and ac voltage ranges are 0.1999 ， $1.999,19.99,199.9$ and 1000 volts．Cur－ rent ranges are 0.1999 ，1．999，19．99， 199.9 and 1999 mA ．Resistance ranges are（1．1999，1．999，19．99， 199.9 ohms and 1.999 megohms．

Oprtions are Touch－n－Hold probes and BCD printer output（TA 355 only）．The TA 855 is $31 / 2 \times 81 / 2 \times 123 / 4$ in．；the TA 356 is $23 / 8 \times 51 / 4 \times 91 / 4$ in．$\$ 289$ each．

Dana Laboratories 2401 Campus Drive Irvine，CA 92664

Data Precision Corp． Audubon Rd．
Wakefield，MA 01880
Data Technology Corp．
2700 Fairview St．
Santa Ana，CA 92704
DigiTec（United Systerns Jorp．）
918 Woodley Rd．
Dayton，OH 45403
John Fluke Mfg．Co．
PO Box 7428
Seattle，WA 98113
Heath Co．
Benton Harbor，MI 49022
Hewlett－Packard Co．
1501 Page Mill Rd．
Palo Alto，CA 94304
Keithley Instruments Coms． 28775 Aurora Rd．
Cleveland，OH 44139
Non－Linear Systems
PO Box N
Del Mar，CA 92014
Schneider Electronics
11 Riverside St．
Medford，MA 02155
Simpson Electric Co．
853 Dundee Ave．
Elgin，IL 60120
Tekelec，Inc．
31829 W．La Tienda Drive
Westlake Village，CA §1Es1
Weston Instruments
614 Frelinghuysen Ave．
Newark，NJ 07114

A TEMPERATURE RANGE Df $-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ is a unique feature of the Digitest 610，a product or Schneider Electronics，Inc．It is a $41 / 2$ digit instru－ ment with four piano－type funietion keys －for temperature，resistarce，voltage and current－along the righi edge of the case and six range keys across the bot－ tom．It operates from bull in NiCad batteries and from 117 or 2：0 V，50－ 6－Hz．A BATTERY－TEST furlc：ion is in－ cluded．

Resistances from 0.1 ohnt to 5 megs are measured in five ranges．Ac and dc currents from 100 nA to 1 riA are mea－ sured in one range；voltage from $100 \mu \mathrm{~V}$ to 1 kV in four ranges．

The Digitest 610 is 3.35 is $4.73 \times$ 9.06 in．， 3.5 lbs．with batteries．$\$ 295$ ．
（Product Listing continues ทп page 81）
things are going digital all over the place. Aside from the advantage of getting a definite figure for a given reading, the digital-readout instruments have the advantage of high accuracy. A lab instrument can be as accurate as 0.002%, and field type instruments are now in use at 0.2% and even better.

There are places where the old-fashioned D'Arsonval meter still has a slight advantage. It is easier to see a peak in a reading with a meter-needle, or sudden current-surges, etc. However, for use in labs, R\&D, and service work, the precise figures displayed by the digital readouts is definitely better. In many modern circuits we must
they can be made with letters, etc.). Each cathode is switched on to display the digit.

The latest thing is a light-emitting diode (LED) readout. These are mostly of the GaAs type, and emit red light with only a very small amount of voltage and current (other materials are used to produce green or yellow readouts). There are two major types; the dot and the "seven-segment" type, with seven bars. These are arranged in a pattern like Fig. 1. To make an " 8 ", all bars are activated. To make a " 3 ", bars A, F, G, E and D are energized, and so on.

The LED dot displays work just like the 7 -segment bar type, but they use
er) are often combined in the same IC. It decodes the BCD (Binary-Cod-ed-Decimal) signals from the Mem-ory-Latch, and converts them into signals to actuate the display.

The Memory-Latch is fed by the Decade Counters; we'll trace this out in a moment. The main difference between Nixie and LED readouts is the voltage. Nixies use about 100 volts, LED's about 15 volts. So, LED's work well with the low-voltage TTL IC's used in the control circuitry. LED's, however, do draw more current than the Nixie type display and do not use very much less power.

Now let's follow the control process through, from the counter inputs.

Digifal Instruments

 For Electromics

 For Electromics
 by JACK DARR
 SERVICE EDITOR

FIG. 1-SEVEN-SEGMENT DISPLAYS using LED's. a-Shows the bar lype, and b-The dot type. Five dots equal one bar.

FIG. 2-DIGITAL METER CIRCUITRY using MOS IC's and LED display. Display units light in sequence, but so fast that there's no flicker.
be pretty accurate; transistor voltages, etc. The digital readout gives us our measurement as " 10.75 volts" or whatever is called for. (It is slightly disconcerting to some old goats to see such a reading displayed as " 10.7543 volts"! It takes a little practice to learn to ignore the "LSD" which is not a chemical but "Least Significant Digit"!)

How they work

Digital readouts are made with several different types of display units. The original was the Nixie tube made by the Burroughs Co. It is a cold-cathode tube like a neon lamp. It has a common anode, and ten cathodes- 0 through 9 (in the most common type;
sets of four or five individual LED's to make the equivalent of the bar. Liquid-crystal displays have been used in some instruments, but there are still some drawbacks-visibility to name just one. As a result, they're not quite as common as the others.

The control circuitry

All of these readouts use a control system which is basically similar. Starting at the display unit and working back toward the input, we go through a Display Driver. This is a set of solidstate switches which controls the illumination of the desired segments of the display. It is fed by a Decoder. These two circuits (decoder and display driv-

The decade counters do just that; count to ten. Their input will be a series of digital pulses, usually $B C D$, from the input of the instrument. Each of these counts up to 9 pulses, then transfers the tenth pulse to the following decade counter and starts over. The counters are connected in series; each one controls one of the digital readouts. The first operates the "units" readout, the next the "tens", next the hundreds, and so on and on.

Their input signal is controlled by a "clock oscillator"; its high frequency has been divided down to get a longer sampling period. A sampling circuit controls the gating of the input signal into "slices" of a given time-duration,
say 1.0 ms . If we're counting a frequency, these circuits will slice off a 1.0 ms sample, square it into square waves, and feed it to the decade counters.

The counters receive the input for the period of time selected by the instrument controls. While doing this, the first decade counter counts up to 9 , then passes the next pulse along to the tens counter. This one takes the first 9 counts, and then passes along a " 100 " count to the following counter. This can go on as long as necessary, depending on the number of units (digits) in the display, and the signal heing counted.

At the end of the counting or sam-
commands them to deliver one output (that is, the output signal which will light only one digit of the display) for giver combinations of high and low on the inputs. A Nixie driver will have the four logic inputs, and ten individual outputs, one for each digit. The one corresponding to the desired digit will go low (grounding the proper cathode in the tube) and all others will remain high. In a Nixie display, all of the tubes light at the same time.

For LED displays, the same basic circuitry is used. But there can be some differences in the actual operation. For example, the Weston panelmeter unit, Model 1221, in Fig. 2, has a four-digit LED display. This one
ily obtained with low-voltage TTL logic units, since it takes soly a few volts to bring an LED to full brilliance.

Needless to say, this kind of work can only be done by liberal use of integrated circuit technology. In many of the new instruments, even these are being supplanted by large sale integrated MOS IC's (LSI-MC)S). Fig. 3 shows the "works" of a Westun Model 1230 bipolar panel-meter. Fig. 4 shows a front view of the Mode 220 and 1221, which does the same thing with only a single LSI chip! You zan do it with discrete transistors but you'll need a U-Haul truck to carry it around!

FIG. 3-INSIDE A DIGITAL PANEL METER. This unit is a Weston Model 1230.

FIG. 4-A SINGLE IC does all the work in this digital panel meter.

FIG. 5-HEATHKIT MODEL IB-1100 frequency counter uses Nixie type readout.

FIG. 6-THIS FREQUENCY COUNTER has eight digits in its readout and goes out to 120 MHz .

FIG. 7-A FREQUENCY COUNTER CAN be used to check the frequency of an amateur radio rig.

FIG. 8-HIGH-FREQUENCY HEASUREMENTS can be made with instr ments like H-P 5354A. It goes to $4 \mathbf{G H z}$.

FIG. 9-COMBINATION INSTFIU UENT is a wave analyzer and a selective voltmeter. Interesting combination of digital meter and analog meter.
pling period, the total number of counts is present on the string of counters, as logic highs or lows at their terminals. Next, a "transfer pulse" commands the counters to send the stored numbers along to the Memory Latch, and reset themselves to zero. These memory latches transfer the stored signals to their outputs when the transfer line goes to a logic low, they "remember" the figure, and hold it. This is then transferred to the de-coder-drivers.

These decode the BCD signal, which is on four lines (called $\mathbf{A}, \mathbf{B}, \mathrm{C}$ and D to avoid confusion with figures (and we'll have enough confusion as it is). The "truth-table" for the decoders
uses a seven-segment display.
A mildly unusual method of lighting the LED's is used. The count comes through the logic, the multiplexer unit, and goes to seven lines leading to the display. All lines are connected to each LED unit, in parallel. To display different figures, the enti-e display is "strobed" by the second set of drive transistors: in other words, each unit is flashed in sequence, by the strobe signal from the multiplexer. So it displays only the digit which its logic signals tell it to.

The scanning is so fast that the display seems to be continuously lit; in this instrument. at a $100-\mathrm{Hz}$ rate. This kind of switching and scanning is cas-

Typical instruments

Now let's look at a few o the ways in which a digital readout cin be used to improve the usefulness of an instrument. We have always had instruments which were potentially very accurate; now we have a readout that can match this. For the 'irst, look again at the Weston Dig tal Panel Meter in Figs. 3 and 4. Thi:; is a simple (On the outside, anylow!) black hox.

It is basically a voltmeter. By selecting values for built-in rarg resistors, it can be anything from a $1910100-\mathrm{mV}$ voltmeter to a 1000 -volt meter. Dc current from 10 mA (ful-scale to 100 mA can also be read. Ac voltages
and currents can be read with an ac adapter, Model 9744.

Data can be provided to make the model 1220 or 1221 read engineering units-feet, pounds, rpm, pressure, and so on. The only difference between the two models is the power supply; the 1220 uses 5.5 volts dc, and the 1221 is 117 -volt ac powered.

Frequency-countnig is one of the tricks that digital readouts do well. The Heath Co. has four models, the IB-1100 (5 digits, to 30 MHz), the IB-1101 (5 digits, to $100 \mathrm{MHz}+$), the IB-1102, (8 digits, to 120 MHz) and the IB-1103 ($81 / 2$ digits, to 180 MHz). These are shown in Figures 5 and 6.

Figure 10 shows the H-P 8640B vhf signal generator, with a digital readout that can be used to show the output frequency, or to read the frequency of an external signal. It will go from 450 kHz to 550 MHz , on AM or FM. The D'Arsonval meter on the panel will also do tricks! It read AM modulation percentage, FM peak deviation or output level in dBm or volts, and it is an autoranger. No switching is needed; it adjusts itself.

Figure 12 shows an $\mathrm{H}-\mathrm{P}$ Model 5270A Automatic Capacitance Bridge. It has a dual digital readout; one reads the capacitance, and the other the dissipation factor or conductance, whichever is desired, simultaneously.
to a signal that is drifting or changing in frequency. Indicator lights on the panel tell whether the circuit is locked or unlocked to the signal.

Figure 11 is the front panel of an oscilloscope. Innocent-looking enough, isn't it? It isn't. This is a digital oscilloscope, the Nicolet Instrument Corp. Model 1090. The difference lies in the way the signal can be displayed. A standard analog scope displays the instantaneous waveform. Storage scopes can hold it, on the special screen of the crt. In the Model 1090, the signal is not fed to the crt. It goes, instead, to a memory bank with a capability of storing 4096 words of 12 bits each.

To display the recorded waveform

FIG. 10-VHF SIGNAL GENERATOR (450 kHz to 550 MHz) has digital readout to show what frequency signal it is producing.

FIG. 11-DIGITAL SCOPE made by Nicolet Instrument converts visual signals into digital code and then remembers the code so it can display the remembered waveform on demand.

FIG. 12-AUTOMATIC CAPACITANCE BRIDGE has a dual digital readout.

FIG. 13-ELECTRONIC STOP WATCH by TAFCO is a different kind of digital instrument.

FIG. 14-AUTORANGING FREQUENCY counter by John Fluke Company uses LSI MOS IC's.

FIG. 15-UNIVERSAL COUNTER-TIMER from Tektronix.

Hewlett-Packard makes a Model 5307 A counter. It is basically a frequency counter, but with the proper transducers can be used for many measurements; vibration, shock, transients, and so on. The Model 5307A is a high-resolution type.

Figure 7 shows another use for a frequency counter. Here, the HewlettPackard Model 5382 is being used to check frequency on an amateur rig. This would be the height of something or other to me! Carrier frequency can be accurately read to within 10 Hz !

Figure 8 shows an $\mathrm{H}-\mathrm{P}$ Model 5354A counter. It will go to 4 GHz , and lock automatically on pulse-trains, as well as CW.

Figure 16 is another capacitance meter. This one is the $\mathrm{H}-\mathrm{P}$ Model 4282A High Capacitance Meter. The unusual thing about it is its top range; it will go to ONE FARAD. (When I first went into this business, one Farad was literally an inconceivable quantity.) The 4282 A will make other handy measurements too: the internal capacitance of a battery; capacitance of a transistor, and so on.

Figure 9 shows an interesting combination instrument; the H-P 3681A Wave Analyzer and Selective Voltmeter. Tuned to a known frequency component of a signal, this instrument will read it to five-digit accuracy, or 1.0 Hz . It has afc which allows locking it
the controls are adjusted, and the waveform is repeated indefinitely. Crosshair vertical and horizontal lines on the display can be adjusted to intersect any part of the waveform. When this is done, by pressing the coordinates button under Numerics, the time since the trigger is shown on the bottom of the crt screen in figures, at the left side. On the right side is displayed the voltage of the waveform at that point, also in figures. By adjusting the controls, any point along the whole length of the 4096-word recorded waveform may be frozen and studied. One engineer told me that this was equivalent to a scope with a trace twenty-two feet long.

Nicolet Instruments also offers their Model 93 plug-in for their scope. This has a dual channel input. Either input may be recorded in the memory bank, at will. Note the storage control pushbuttons in the center. By pushing hold next the memory records the waveform that comes along after the next trigger signal. hold last records what followed the last trigger. LIVE shows that waveform as it is actually taking place, in real time. The Model 93 plug-in will even display the stored information while watching live signals, at the same time.

Figure 13 shows still another use. This is an electronic stop-watch, with a digital readout. Using a crystal-con-
the same well known company, another unit in the same series, with a slightly different form of digital readout, is a dc power supply. It is very tightly regulated, and the exact voltage output is shown on the three-thumbwheel control - a special kind of "digital readout".

Tektronix also make a $550-\mathrm{MHz}$ Frequency Counter, with digital readout, plus indicator lamps to make sure you know where you are in the band. Fig. 15 shows a Model DC-505 "Universal Counter-Timer", which will do so many things that I'm not even going to try. Check that panel.

A novel approach to the use of a scope as well as a digital meter can be
events-counting, etc.) you set the figures on the thumbwheel dial. When the number of events reaches the preset count, the DD-501 puts dut a trigger pulse, for an oscilloscope or any other type of triggered instrument.

A well-known name in the service instrument field, the Simpsoin Electric Co.. makers of the famons old 260 vom, also shows up in the digital field. Figure 19 shows an instrument that might be called "Son Of 2664° It's the digital vom, Model 360. There is also a "lay-down case" type, the Model 460 in the same line. The same :ompany also makes a digital panel-me eer (Fig. 20). This basic instrument can be made to read almost any quantity de-

FIG. 16-HIGH-CAPACITANCE METER accurately reads capacitor values as large as one Farad.

FIG. ${ }^{17} 7$-DIGITAL DELAY MODULE by Tektronix. Thumbwheel switch for getting count is also digital readout.

FIG. 18-COUNTER/TIMER module with digital display is part of new Tektronix instrument system.

FIG. 19-SON OF 260 is the Simpson model 360 digital vom.

FIG. 20 -DIGITAL PANEL METER can be used to read almost any quant ty

FIG. 21-MOST UNUSUAL DIGIIAL instrument we found is this Green Benl: Scientific Sobriety Tester.
trolled clock. it can be used in two ways; for timing the overall time of an event, and also for checking lap times. etc. without losing the overall count.

Figure 14 is an autoranging counter from the John Fluke Co. It will go up to 80 MHz . and count as low as 5 Hz . This versatile instrument is also made possible by LSI chips.

Figure 18 shows one of the numerous combinations of instruments possible in Tektronix's new TM-500 series. It shows an SG-503 oscillator, a DC 504 Counter-Time and a DM-502 Digital Multimeter, in a 3 -unit Mainframe. The power supply for all three is provided by the mainframe. From
yours mounting a DM-40 DMM on top of a 465 portable Oscilloscope. Now, many things can be done. For only one, you can read the time interval setween anly two points on the waveform; this is shown on the digital readout in whatever units are needed. Accuracy of this is within 0.1%.

A typical use of the plug-in concept of tre TM-500 Series is in a Medical Instrument Calibration System; it can he ised for calibrating EKG, ECG, Crash-carts, and many other types of medical electronic instrumentation.

Figure 17 shows an unusual digital readout application. It is a Tektronix DD-501 Digital Delay. To read any desired count (for applications such as
sired, with a few simple char ges. This is the Model 2830.

Last but not least, we se: in instrument that could conceivatly cause some arguments. It is madz y Green Bank Scientific Co., Box $1(0)$, Green Bank, W. Va., along with sev \geq ral other similar instruments. It's a digital-readout Sobriety Tester. You gtt a definite pass or fall readout. Fighle 21 shows the instrument.

There are probably man uther uses for these versatile and higrly accurate instruments. but this is a resr sentative
 field at the moment.

Using COSMOS Digital IC's

Abstract

This is part I/I in a series of articles describing COSMOS IC's, the latest in solid-state technology. Monostable and astable multivibrator circuits are described here, along with simple circuits you can build.

by R. M. MARSTON

IN PART II OF THIS SERIES WE LOOKED AT the operating principles of COS/MOS digital IC's, and explored a number of practical ways of using the CD4001 IC in inverter, gate, and logic applications. We went on to discuss bistable multivibrator applications.

In this third part of the series, we go on to look at monostable and astable multivibrator applications.

Monostable multivibrator projects

A basic monostable or one-shot multivibrator can be made from two NOT or NOR logic gates by direct-coupling the output of one gate to the input of the other, and by coupling the output of the second gate to the input of the first via a simple R-C time constant network. Figure 21 shows a practical way of making a basic monostable multivibrator, or pulse stretcher, from one half of a CD4001 $\cos / \operatorname{mos} 1 \mathrm{C}$. You can also use the KD4001.
Here, gate A is used as a Nor logic element, and gate B is used as an inverter or not gate. The circuit action follows:

Normally, when the circuit is in its quiescent state, the input to gate B is held high via $R 1$, so the output at gate B is low: Both input terminals of gate A are thus low, so the output of gate \mathbf{A} is high. Consequently, since both ends of Cl are high, Cl is fully discharged.

Suppose now that a brief positive trigger pulse is applied to the input of gate A. As soon as this pulse is applied, it drives the output of gate A to ground and drags the input of gate B with it via discharged capacitor Cl : Consequently, the output of gate B immediately goes high, and thus holds the output of gate A in the low state even when the input trigger pulse is subsequently removed.

As soon as the output of gate A goes low as the result of the applied trigger
pulse, C1 starts to charge via R1, and an exponential rising voltage is applied to the input of gate B via the $\mathrm{R} 1-\mathrm{C} 1$ junction. Eventually, after a delay determined by the R1 and C1 values, this exponential voltage rises to the transfer voltage of gate B, and at this point, the output of gate B switches sharply back into the low state. As the output of gate B goes low it

FIG. 21-BASIC MONOSTABLE MULTIVIBRATOR or pulse stretcher.
causes the output of gate A to go high: C1 then discharges rapidly via the output of gate A and input protection diode D1 (see Fig. 7-b. September 1974 issue) of gate B, and the operating sequence is then complete.

Thus, the output of the Fig. 21 circuit is normally low, but goes high as soon as a brief positive trigger pulse is applied to the input: The output then remains high for a certain period, and then switches abruptly back to the low state again: The precise period of the output pulse is determined by the R-C time constant, and by the value of the transfer
voltage of the individual CD4001 IC that is used.

Three points should be noted about this particular circuit. The first point is that, since the period of the circuit is dependent on the transfer voltage of the particular CD4001 that is used, the period that is obtained using a particular set of R-C values can vary considerably between one CD4001 and another. The CD4001 in fact has a production transfer voltage spread of 30% to 70% of the supply voltage.

In practice, the transfer voltage of any particular CD4001 is almost constant over a wide range of temperature and supply voltages, so the Fig. 21 circuit has excellent stability, but must have its time constant values individually adjusted to give a particular timing period. The Fig. 21 circuit in fact gives a period of roughly 1 second per $\mu \mathrm{F}$ of Cl value when R1 has a value of 1.5 megohms.

FIG. 22-"NOISELESS" PUSH BUTTON or manually-triggered monoslable.

$R 1=R 2$
$C 1=C 2$

＊D2＝LOW－LEAKAGE GENERAL－PURPOSE SILICON DIOCE

FIG．23－BASIC COMPENSATED monostable multivibrator．

＊D1＝LOW－LEAKAGE GENERAL－PURPOSE SILICON DIODE

FIG．24－IMPROVED COMPENSATED monostable multivibuator．

Cl can have any value between a few pF and hundreds of $\mu \mathrm{F}$ ：The value of R1 can range from a few thousand ohms to thousands of megohms，if required．

The second point to note about the circuit is that its input must always be tied to ground in the absence of the posi－ tive trigger pulse：This requirement can be met by applying the input from a permanently connected de source，or by strapping the input erminal to ground via a 1 －megohm resistor as shown dotted by R 2 in the diagram．

The final point to note is that，since an exponential voltage is applied to the in－ put of one of the gates during the oper－ ating cycle，the gate is driven into its linear region during each operating cycle． A measurable current thus flows in the circuit during the operating period．All cos／mos monostable and astable multi－ vibrator circuits in fact pass a measurable current when they are in their functional modes．

Figure 22 shows how the circuit in Fig． 21 can be used as a＇noiseless＇push－ button or manually－triggered monostable by simply using the push－button to apply the positive trigger pulse to the circuit．

It has already been pointed out that a snag with the basic monostable circuit of Fig． 21 is that its period depends on the transfer voltage of the individual CD4001，and is not dictated solely by
the F ．and C values．Figure 23 shows the basic circuit of a compensated mono－ stable multivibrator that does not suffer from this snag．The diagran also shows the trasic waveforms of the circuit．Note that the circuit uses two sets of R－C time－constant components．Circuit opera－ tion is as follows：
When the circuit is in its quiescent state the S 1 side of C 1 is grounded via R3，but the R1 side is held positive：C1 is thas fully charged under this condition， and the input of gate A is high．The out－ put of gate A is thus low，so C 2 is fully discharged at this time，and the output of gate B is high．

Suppose now that Start button SI is brie：ly closed and then released．As S1 is closed，the SI end of C1 is connected to the positive supply line，and Cl dis－ charges rapidly via R4 and D1（which is one of the input protection diodes built into the CD4001）：This action has no effect on the circuit．When S1 is released， however， Cl is fully discharged，so as soon as S 1 is released，Cl starts to re－ chatge via R1，R3，and R4，thus pulling the input of gate A low and making the output of gate A go high：As the output of gate A goes high，it charges C2 rapidly via $D 2$ ，and thus causes the output at gate \mathbf{E} to go low．
As soon as S 1 is released， C 1 starts to charge up，and a rising exponential volt－
age is applied to the input of gate A ． After a time determined by the 21 and C1 values，this voltage RISES to the transfer voltage of gate A，ard at this point the output of gate A switches sharply into the low state and removes the charging voltage from C 2 ai D 2 be－ comes reverse biased．C2 then starts to discharge via $R 2$ ，and after a $t m \equiv$ deter－ mined by the R2 and C2 values，the C2 voltage FALLS to the transfer voltage of gate B ，and at this point the ot tput of gate B switches sharply into tie high state．The operating sequence of the cir－ cuit is then complete．Note that R4 and R5 are used purely as safety resistors， and prevent heavy capacitor discharge currents from flowing into the $1 C$ gates if power is removed from the circuit dur－ ing the operating sequence．

Now，this particular circuit uses two identical R－C time constant retworks， and its final output period is equal to the sum of the two individual time constants． The important point to note，however，is that one of these time constants causes a circuit action when its exponensial volt－ age RISES to the transfer voltagz of gate A ，and the other causes a circtit action when its voltage FALLS to the transfer voltage of gate B．Consequent），if both gates have identical transfer tol ages，the transfer voltage values effectively cancel out，and have no effect on the actual period of the circuit．

For example，if both gates h．ve trans－ fer voltages of $30 \%, \mathrm{C} 1$ will have to charge to 30% of the supply voltage to cause gate A to change stats and C 2 will discharge by 70% of the supply volt－ age to cause gate B to chang：tate，thus giving a total voltage chang：of 100% ． If，on the other hand，both gates have transfer voltages of 40% ，C1 will charge to 40% and C2 will discharge by 60% during the operating sequence tagain giv－ ing a total voltage swing of 10% ．The total period of the circuit is hus inde－ pendent of the transfer voltige：value of the IC，providing that botk ates have identical transfer voltage val $1 e$ ．

Now，although transfer voltage values can vary over wide limits k et ween indi－ vidual cos／mos IC＇s，the indivilual trans－ fer voltage values of a set of g ates within a single CD4001 are alway virtually identical，since the gates ars all formed on the same semiconductor thip at the same time．Consequently，the total timing period of the Fig． 23 circuil is dictated purely by the values of $\mathrm{R} 1 \subset 1$ and R2－ $C 2$ ，and is independent of veriations in the parameters of indiviciosl CD4001 IC＇s．

The Fig． 23 circuit is shoun as being manually triggered．The circuit can be modified for electronic triugering by simply eliminating $\mathbf{S} 1$ and ipplying the positive trigger pulse across R3．In either case，a practical disadvantage of the cir－ cuit in Fig． 23 is that the ectual mono－ stable action is initiated by the end， rather than the start，of the input trigger pulse．This snag can be overcome by modifying the circuit as shown in Fig． 24.
This circuit gives an culput that is normally high（positive），but which goes low（to zero volts）for a p －eset period when a trigger pulse is apflied．If re－

IF YOU ARE READY FOR SERIOUS CAREER

Learn College-Level

ADVANCEMENT NOW

Electronics af Home

There is only one way to a career in advanced electronics-through advanced training. You can get such training through a resident engineering college or you can take a CREI specialized college level electronics program at home.

Wide Choice of Programs. CREI offers you program arrangements with fourteen areas of specialization in advanced electronics. You can select exactly the area of specialization for the career you want.

CREI also offers program arrangements both for those with extensive experience in electronics and for those with only limited experience. All programs are college-level, except for a brief introductory level course, which is optional.

Unique Laboratory Program. CREI now offers a unique Electronic Design Laboratory Program to train you in the actual design of electronic circuits. You also get extensive experience in tests and measurements, breadboarding, prototype building and in other areas important to your career. The Lab Program makes it easier for you to understand the principles of advanced electronics. Only CREI offers this complete college type laborstory program.

The Lab Program includes professional equipment which becomes yours to keep. You will especially appreciat? the Electronic Circuit Designer, which is available only through this program and which you will find extremely valuable throughout your professional career.

College Credit. You can actually earn college credit through CREI prograrrs, which you can use at recognized colleges for an engineering degree. CREI maintains specific credit transfer arrangements with selected colleges in the U.S.

Industry Recognized Training. For nearly 50 years CREI programs have been recos nized throughout the field of electronics. CREI students and graduates hold responsible positions in every area of electronics anc are employed by more than 1,700 leading creanizations in industry and government.

Qualifications to Enroll. To qualify for en ollment, you should be employed in electronics or have previous experience or practical training in the use of electronic equipment. You must also be a high school graduate ol true equivalent.

All CREI Programs are available

under the G.i. Bill
Send for FREE Book. If you are qualified, send for CREl's full color catalog descriting these college-level programs and your ciareer opportunities in advanced electronics. Mail card or write for your copy of this book:

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D. C. 20016

[^1]quired, the polarity of the output signal can be reversed, so that it is normally low but goes high for the duration of the output pulse, by simply wiring an inverter into the output of the circuit in Fig. 24, as shown in the positive-output compensated monostable circuit of Fig. 25.

Astable multivibrator circuits

The most widely used type of multivibrator circuit is the astable, or squarewave generator. Figure 26 shows how one half of a CD4001 cos/mos IC can be used to make a basic $1-\mathrm{kHz}$ astable multivibrator. Note that both gates of the circuit are connected as simple inverters, and that the circuit uses only a single set of R-C time constant components. The action of the circuit is as follows:
Suppose initially that a stage has been reached in the circuit operation where the output of gate B has just switched into the high state and the output of gate A has just switched into the low state, and that Cl is fully discharged at this moment.

Since Cl is discharged at this time, the input of gate A is effectively shorted to the output of gate B, and is high. As soon as the above stage of operation is obtained, C1 starts to charge up via R1 and the low (effectively grounded) output of gate A (which is derived from the R1-C1 junction) starts to decay exponentially towards zero.

Eventually, after a delay determined by R1 and C1, the input voltage of gate A falls to the transfer voltage point of gate A and at this instant, the output of gate A switches into the high state and drives the output of gate B into the low state: As the output of gate B switches to the low state, it forces the positive end of Cl downwards, and thus forces the gate A input end of $C 1$ to attempt to swing negative with respect to the zero volts line: As the input of gate A goes negative to the zero volts line, input protection diode D3 (see Fig. 7-b, September 1974 issue) conducts and removes the charge from C 1 .

Thus, at the end of this switching cycle, C1 is again fully discharged, the output of gate B and the input of gate A are low, and the output of gate A and the input of gate B are high.

As soon as this new stage of the operation is obtained, C 1 starts to recharge in in the reverse direction via R1 and the low (grounded) output of gate B, and the voltage at the input of gate A (which is derived from the $\mathrm{Rl}-\mathrm{Cl}$ junction) starts to rise exponentially towards the positive voltage. Eventually, after another delay determined by R1 and C1, the input voltage of gate A rises to the transfer voltage of the gate and at this instant, the output of gate A switches into the low state and drives the output of gate B into the high state.

At this moment, Cl discharges rapidly via input protection diode D1 of gate A as the $\mathrm{R} 1-\mathrm{Cl}$ junction end of the capacitor attempts to go positive relative to the positive supply line, and the operating sequence is then complete. The switching sequence then repeats ad infinitum, and a series of approximately

FIG. 25-POSITIVE-OUTPUT compensated monostable multivibrator.

FIG. 26-BASIC 1-KHZ ASTABLE multivibrator or square-wave generator.

FIG. 27-VARIABLE FREQUENCY (600 Hz 6 kHz) astable multivibrator.
square waves are generated at the two outputs of the circuit: Outputs A and B are 180° out of phase.

An outstanding feature of the basic astable multivibrator circuit of Fig. 26 is that it uses only two time constant components (R 1 and C 1), and the values of both of these components can be varied over wide ranges to give required operating frequencies. The value of R1 can be varied from a few thousand ohms to thousands of megohms, and C1 (which must be a non-polarized capacitor) can be varied from a few $p F$ to several μF. The operating frequency is inversely proportional to the R1 and C1 values, and can be varied from less than one cycle per hour to several MHz .

The operating frequency of this circuit can be made variable, if required, by

FIG. 28-GATED 1-KHZ ASTABLE multivibrator.

FIG. 29-COMPENSATED 1-KHZ astable multivibrator.
wiring a variable resistor in series with limiting resistor $R 1$, as shown in the circuit of Fig. 27. With the component values shown, this circuit covers the approximate frequency range 600 Hz to 6 kHz .

If required, the basic astable multivibrator of Fig. 26 can be gated on or off via an external pulse signal by connecting gate A as a NOR gate and applying the gating signal to one of the NOR gate inputs, as shown in Fig. 28. The multivibrator is cut off when the gate input signal is high, and is operative when the gate input signal is low.

The basic astable multivibrator of Fig. 26 acts as a simple and very useful circuit, but suffers from several disadvantages. The first of these is that, since the (continued on page 88)

new FTC ratings for audio amplifier power

 are they any good？There are some potential loopholes in the newly imposed FTC rules．Here＇s a look at how they work and where the problems may lie

by LEN FELDMAN

CONTRIBUTING HI－FI EOITOR
by the time you read this，many manufacturers of home entertainment audio products will be busily printing new advertising literature，specifica－ tion shects and even the outside of packing cartons．No，the industry has not suddenly redesigned its entire prod－ uct line－the amplifiers haven＇t changed that much．But they are changing the statements regarding their power output capability to bring them into line with a new trade regu－ lation promulgated on May 3， 1974 by the Federal Trade Commission． The new rule becomes effective No－ vember 4， 1974 and the FTC will consider violations after that date to be＂an unfair method of competition and an unfair or deceptive act or practice within the meaning of Section 5 （a）（1）of the Federal Trade Com－ mission Act 15 U．S．C．S 45 （a）（1） to violate any applicable provision of this rule．＂

Reasons for the FTC action

Over the past few years，some seg－ ments of the audio industry have been engaged in a quasi－technical semantic race to devise power output statements for audio amplifiers which would yield higher and higher numbers of＂watts of output＂for their products．About the only thing these assorted specifica－ tions had in common was their use of the word＂watts＂as a measure of power．But what＂kind＂of watts were used？There were＂continuous watts＂ －the amount of power that an am－ plifier would deliver on a continuous basis into a fixed，resistive load．

This measurement，the most con－ servative of all，became known as rms power，a term which in itself is seman－ tically meaningless．The letters rms stand for＂root－mean－square．＂Many ac voltmeters are calibrated to read 0.707 of peak sinusoidal ac voltage applied to their terminals．In the case of a sine wave，power developed across a load is defined by the Formula $\left(\mathrm{E}_{\mathrm{rms}}\right)^{2 / R}=P$ ，where $\mathrm{E}_{\mathrm{rms}}$ is the root－mean－square voltage，R is the re－ sistive component of the load imped－ ance across which the output voltage is applied and P is the resulting power in watts．Power itself cannot be termed rms because musical waveforms are seldom，if ever sinusoidal and as an amplifier is driven into clipping or overload，even a pure sinusoidal wave－ form changes shape so that voltmeter readings no longer correspond to 0.707 of peak voltage values．Nevertheless， the term＂rms power＂persists and for our purposes can be considered iden－ tical to＂continuous power＂－－the more appropriate term．

Another term＂music power＂（also known as＂dynamic power，IHF Dy－ namic Power or IHF Music Power＂） has been used to describe amplifier power output at somewhat higher numerical values of wattage．The num－ bers are based upon the fact that for short periods of time，most amplifiers can deliver somewhat more power than they can on a continuous basis．Since musical waveforms contain relatively short bursts of higher energy，many experts felt that＂music power＂rep－ resented a more meaningful way to
describe an amplifier＇s power output capability．

Unfortunately，＂music power＂ quickly became corrupted anc gave way to such meaningless terms as ＂peak power，＂＂peak music power，＂ instantaneous peak power（IP＇F）and even＂instantaneous peak music pow－ er．＂Each of these successive manip－ ulations of terms gave rise to higher and higher wattage figures．It was not uncommon to find products rated at 100 watts＂IPP＂which actually pro－ duced 5 watts or less of＂cont nuous power．＂Small wonder that the FTC stepped in and tried to bring some order into these chaotic audio specs．

A summary of the FTC rule

To begin with，the new FTC regu－ lation requires that all audio products that deliver more than a 2 －watt Jutput must specify，in boldest advertising type，the following with regerd to power output：

1．＂The minimum sine－wave con－ tinuous average power output，in watts，per channel－
a．for each load impedance for which the equipment was de－ signed
b．measured with all channels driven

2．The manufacturers rated power band or power frequency re－ sponse，in Hertz (Hz) for each of the rated power outputs requ red to be disclosed per item（1）and
3．The manufacturer＇s rated per－ centage of maximum tota fiar－
monic distortion at any power level from 250 mW to the rated power output for each rated power output and its corresponding rated power band or frequency response.

A "Legal" power statement

Based upon our interpretation of the above, the following might constitute a proper power output disclosure:
"Brand " X " amplifier has a rated power output of 50 watts per channel, all channels driven, into an impedance of 8 ohms, at any frequency from 20 Hz to 20 kHz , with harmonic distortion not exceeding 0.5%." Similar statements would also have to be made with appropriate numbers substituted for 4 ohm and 16 -ohm loads, if the amplifier were designed to operate into these additional load impedances.

Remaining ambiguities

To paraphrase astronaut Armstrong, the new FTC rule represents "one giant step" for the audio industrybut the typical hi-fi component purchaser can still be subjected to ambiguities and confusion even if the new rules are strictly followed and enforced. Consider, first, the two power output curves of Fig. 1. Both amplifiers " A " and " B " could be described exactly as in the example

FIG. 1-POWER VERSUS FREQUENCY of two amplifiers at 0.5% THD rating.
above. Each can produce 50 watts at 0.5% THD at the frequency extremes of 20 Hz and 20 kHz . Note, however, that if the power bandwidth had been limited to from 50 Hz to 10 kHz , amplifier " A " could have well been rated as a 70 -watt-per-channel amplifier and, with that limitation, would "read" as the better amplifier (which in fact, it actually is).

Figure 2 presents a more confusing situation. The manufacturer of amplifier " B " now chooses to rate his amplifier as a 100 -watt unit-but at a power bandwidth extending only from 100 Hz to 5 kHz . While more conservative manufacturer "A" prefers to provide data on bandwidth from 20

8-OHM LOADS
BOTH CHANNELS DRIVEN RATED THD $=0.5 \%$

FIG. 2-"LOWER POWERED" AMPLIFIER A can actually produce more power at frequencies in shaded areas because of its better power bandwidth.
Hz to 20 kHz , and therefore limits his power rating to 75 watts. Amplifier "A" will probably sound better when pushed to its power limit, because the low frequency energy demands of music are great, and at 40 Hz , amplifier " A " is actually capable of audibly greater power output than amplifier " B ". If this idea is carried to its ridiculous extreme, there is nothing to prevent an amplifier manufacturer from specifying power bandwidth from 999 Hz to 1001 Hz so as to come up with the highest wattage rating possible (power output at midfrequencies is almost always easier to achieve than at frequency extremes. Only an educated consumer could be expected to understand this subtle subterfuge and separate the good amplifier from the not-so-good one.

Thus far, we have given examples of pairs of amplifiers having identical rated harmonic distortion (THD). In this area, too, there is unlimited latitude for manufacturers to take. Consider Fig. 3. Amplifier "B" appears to have greater power output than amplifier " A " and even has great power bandwidth (20 Hz to 20 kHz against 30 Hz to 20 kHz) but is it, indeed the "better" amplifier? Its rated distortion is quoted as 1.0% while that of amplifier " A " is quoted as 0.1%. If amplifier " A " were driven harder, so as to produce the 50 watts shown for amplifier " B," would its distortion be

FIG. 3-SINCE MANUFACTURERS MAY QUOTE different rated harmonic distortions for their products, a fair comparison of these two amplifiers cannot be made without further information or lab testing.
better, equal to, or worse than the 1% quoted for amplifier "A"? Further, would its power bandwidth then equal or exceed the 20 Hz to $20-\mathrm{kHz}$ bandwidth quoted for amplifier " A "? The only way a consumer can know would be to take both amplifiers to a properly equipped laboratory and have them measured under identical conditions, even though both manufacturers have fully complied with the new FTC rule.

Pre-conditioning tests

In an attempt to insure that all amplifier ratings are determined on the basis of long term operation and stability of the product being specified, the FTC rule also calls for certain standard test conditions (120 -volt supply voltage for example) and a one hour pre-conditioning test during which the amplifier is required to deliver $1 / 3$ of its rated power to a resistive load. Anyone familiar with class "B" operation of solid state amplifiers knows that maximum internal power dissipation of the output transistors occurs when 40% of maximum power is delivered to the external loads. Since $1 / 3$ of full power is very close to 40% of full power, this means that the output devices will be dissipating nearly their maximum. Many better amplifiers are equipped with electronic protection circuits which would interrupt power under these conditions. In theory, such amplifiers would have fulfilled their pre-conditioning tests even if no power were delivered to the loads for the last 40 minutes of the specified hour-though surely the avowed purpose of the pre-conditioning would not have been fulfilled.

On the other hand, manufacturers of less sophisticated amplifiers (which might well destroy themselves or blow their output fuses during these preconditioning tests) may well have to derate their stated power output figures or add cost to their products in the form of larger heat sinks or over rated power output semiconductors. This strikes us as unfair to the consumer and the manufacturer. It is well known that under musical playback conditions, average power output from an amplifier (over a long time period) can be expected to be about $10-\mathrm{dB}$ lower than maximum power produced during moments of loud musical crescendos. Thus, a pre-conditioning test at 10% of rated power would have been more realistic and more meaningful. Such a 10% pre-conditioning test was, in fact, called for in the now obsolete IHF measurement standards.

Other power disclosures

The FTC rule does not specifically prohibit the publication of power out-
put ratings other than the preferred "continuous" power. It does, however, require that such optional disclosures as "peak power" or "music power" be accompanied by a disclosure of the other accompanying parameters such as impedance and power bandwidth. Distortion, however, need only be quoted for the additionally disclosed rated output (and not all the way down to 250 mW , as in the case of continuous power). The FTC further requires that such optional disclosures be less conspicuously or prominently made than the continuous power output disclosure. They go on to define "less conspicuous" as not being in bold face type nor in type which is more than two-thirds the height of the continuous power disclosure. The advice to the audiophile would seem to be "Read the large print and ignore the fine print!"

A Noble Beginning

Our criticism of the newly issued FTC power rule should not be taken as a negative one in all respects. Certainly the need existed for some clarification of this primary specification as it applies to home audio equipment. We do, however, take issue with those who maintain that the new rule in and of itself, will solve all the problems of misinformation which have been rampant in the audio industry for many years. Literature and advertising matter printed by low-end audio producers of consoles, compacts and low fidelity components will, no doubt, have to be dumped in trash cans (hopefully for paper recycling) and no doubt these hi-fi opportunists will henceforth omit all references to power output rather than be caught with their one or two watts showing.

Reputable manufacturers of good quality component equipment will hardly be affected by the new rule, since they have generally gone beyond its disclosure requirements in the past.

The real point to be made is that the potential audio consumer not be lulled into a false sense of security when reading post-November 1974 specification sheets. There can still be confusion-and you are still not assured of being able to compare products on a totally equal basis. Hopefully, the Institute of High Fidelity will come up with new Amplifier Measurement Standards which should help to make power amplifier specifications more uniform. Until that happens, it's up to the consumer to read specs carefully, compare performance through listening tests, and rely on the hard earned reputation of legitimate high fidelity component manufacturers.
eqpipinant
report

Hewlett-Packard 1221A and 1220A Oscilloscopes

THE HEWLETT-PACKARD CO., MAKERS of precision instruments have come up with a new solid-state triggered-sweep oscilloscope that should be ideal for most kinds of electronic work. There are two models; the 1221A singlechannel, and 1220A dual-trace. Otherwise, the two are identical.

The vertical amplifiers have a very wide response, from dc up to 15 mHz . at a risetime of 23 ns . The dual-trace displays in the 1220A use two different modes. The signals are "chopped" at the lower frequencies, from 0.5 $\mathrm{s} / \mathrm{div}$ up to $1.0 \mathrm{~ms} /$ div. This causes the sweep to display small sections of each waveform alternately. While the beam is traveling from one channel to the other, it is completely blanked. So the two waveforms appear to be continuous.

For the higher frequencies, from $0.5 \mathrm{~ms} / \mathrm{div}$ up to $0.1 \mathrm{~ns} / \mathrm{div}$, the switching goes into an "alternate" mode. Now, each trace is fully scanned, and the beam then switches to the other for a full trace.

Each vertical amplifier is identical. They have calibrated vertical attenuators which cover a range from $2 \mathrm{mv} /$ div up to $10 \mathrm{~V} / \mathrm{div}$ in 12 separate ranges. A variable attenuator can be used for vernier settings if needed. Pushbutton selector switches allow a choice of channel a, channel b, or both at once. The displays are both locked by the signal in Channel a for triggering. Since most work involves signals at the same frequency, one trigger signal can be used for both.

The triggering circuitry will lock in on any signal from 2 Hz to 15 MHz , provided the input signal is large enough to produce one division of vertical deflection. The trigger action is very stable and easily adjusted. Internal, external, or ac line sync can be used by pushing the proper button. For TV work, the 1220 A has an internal TV sync separator. This helps to lock any standard TV waveform of either vertical or horizontal frequency.

A slope control allows triggering on
either the positive going or $n \in$ gative going portions of the waveform. Incidentally, the TV sync separitor can be used as a low-pass filter for other waveform tests. if needed. A other pushbutton control allows the use of a fixed attenuator with the esternal trigger signal or external swee 5 . It has two positions 1:10 or 1:1.

For use with an external horizontal sweep signal, the 1220A cin be switched to EXT. HOR. input, when the $\mathrm{x}-\mathrm{y} / \mathrm{SWEEP}$ switch is pushed in the $\mathrm{x}-\mathrm{y}$ position, the internal herizontal sweep is disabled, and a sweep signal must be fed into the ext. hor. Jack. This is for use with sweep alignment equipment. For vectorscope $u s \geqslant$, the signal from the red grid can go to the channel a input, and from the blue grid to the EXT.hor. input

The CRT used in the 122) A. is a special type. It has the graticule on the inside of the screen, to e irminate parallax errors. The phosphor used is a special P31 type. The trace is blue, and very bright thanks to the 2 kV accelerating voltage used.

A beam-Finder pushbutton is used if there is no trace on the screen This partially collapses the sweep, showing you where the pattern is. In ald jition to this, the triggering circuitr: has another very handy feature. Ir stead of blanking the trace completsly if there is no input signal, an automatic circuit causes the trace to appear This is called the bright-LINE display. When a signal is applied to the nput, the bright-line circuitry is autoratically disabled and the triggered sweep operates normally.

Despite all of its complex cirsuitry the 1220 A is a very compact instrument. Only 17 cm high, 30.4 cm . wide and 39.7 cm deep ($7 \times 12 \times 1 \frac{1}{5}$, in inches). The controls are very clearly marked, and the panel is divided into sections so that confusion is elimir ated.

The customary, highly detailec and well-written instruction book anc service manual is provided. This gives you full instructions for setting up and operating the 1220A. In addition to this, a very detailed section or the theory and operation of the irstrument is included.

Step-by-step TV Troubleshooters Guide

Abstract

Analyzing output waveforms is an integral part of troubleshooting a television receiver. This method pinpoints the defective circuit quickly. Here's a guide to this effective method.

by STAN PRENTISS

WITH THE INTRODUCTION OF BOTH better instruments and solid-state color TV receivers, TV waveform analysis has become a science rather than an art. And several manufacturers are already indicating this as they offer factory-generated keyed rainbow signals for checking overall receiver operation and troubleshooting.

In hybrid and tube sets, marginal operation is still possible and even probable if a component is malfunctioning, but solid state receivers either play or shut down sectionally or completely if a single transistor or IC isn't doing its job. The reason is that semiconductors normally operate at 90% of maximum until they either open or short. Leakage (at least for silicon types) is usually negligible unless man made or caused by poor case seals. So, with RCA announcing no more tube receivers, and other set manufacturers probably following, the days of wholesale component substitutions are past, and an analytical approach to repair must prevail. Better color bar generators will help make this possible.

The general approach

When examining an ordinary block
diagram of a color TV receiver, it is important to look at the set in terms of functional units rather than limited stages (see Fig. 1). Using this approach, the overall area of trouble can be located accurately and quickly, then conventional methods such as examining individual parts can take over. With modular and IC receivers this approach should work, for in some of these sets selective waveforms will be either difficult or virtually impossible to obtain. You should, however, be very aware of what each waveform means and why it is there.

Video i.f. amplifiers and agc

As shown in Fig. 2, the upper display (Y1W1) is the total composite video signal. This signal is composed of the vertical sync tips (a); blanking pedestal (b); black peak (c); video information and white peak (d). Point d also shows you when the composite video signal is at full modulation so the agc may be properly set to avoid sync compression. The rf agc is adjusted visually (or with a voltmeter) on weaker signals so that it will become active at some pre-determined dc level (or i.f. agc's strongest out-
put). It's better of course, to use a broadcast signal to set the agc than one from a signal generator since there is usually more than one station in each community, and their signal strengths will normally vary. Using the composite video signal is also an excellent way to determine if agc will drive i.f. amplifiers between cutoff and saturation; such action is normal in well-designed sets. In addition, if the i.f. amplifiers aren't operating correctly; sync, luminance, and chroma are all directly affected, as well as sound. So when servicing a color receiver, check its general video response following the video detector; often your problems begin here and not where they seem to be. Figure 2 also shows the conventional sync pulse tip (Y2W1) with the video removed and a swing of 30 volts p-p. The waveforms in Fig. 2 consist of slightly more than one field since each field is $16.664 \mu \mathrm{~s}$ in duration, and the scope time base is set for a total of $20 \mu \mathrm{~s}$ (10 div. $\times 2 \mu \mathrm{~s} / \mathrm{div}$.) .

Sync pulses

In Fig. 3, all voltages, time base, and dc references for both waveforms

FIG. 1-BLOCK DIAGRAM OF TYPICAL COLOR TV is the same for fube, transistor or IC circuits.

FIG．2－COMPOSITE VIDEO and sync wave－ forms．
see，sync is transmitted only when there is no incoming video，so blank－ ing intervals are important too．

The composite video signal is shown again in Fig． 4 （Y1W3）at a sweep rate of $10 \mu \mathrm{~s} / \mathrm{div}$ ．The composite video signal has a blanking interval （g）of just under $12 \mu \mathrm{~s}$ ，and a hori－ zontal sync pulse（h）width of $5 \mu \mathrm{~s}$ ． Note that the sync pulse（h）（Y2W3） has a sharp leading edge because of the instantaneous charge of the differ－ entiator and coupling capacitor，but the capacitor discharge forms a sloppy trailing edge．Only the leading edge， however，is used for the receiver＇s afc

FIG．3－USING THE SCOPE＇S X5 EXPANDER shows the intricate delails of Fig． 2.
are the same as in Fig．2，except we＇re using the oscilloscope＇s $\mathbf{X} 5$ expander that produces a sweep of $0.4-\mathrm{ms}$ per division instead of $2 \mathrm{~ms} / \mathrm{div}$ ．The blanking interval and sync pulse de－ tails now become quite distinct．The 1.4 ms vertical blanking（two fields to a frame）can now be measured quite accurately，and the six vertical pulses（e）are very evident in both waveforms as are the six equalizing pulses（f）which precede and suc－ ceed them．If this sync information had been compressed or distorted，the deflection circuits would be malfunc－ tioning，especially the vertical oscil－ lator which is often affected first． Although you won＇t be expected to count these vertical sync and equal－ izing pulses each time there is a sync problem，it is comforting to know they＇re there and not buried some－ where they shouldn＇t be．As you can
sync time comparison．So there＇s no confusion between leading and trailing edges，let＇s reverse polarity of the sweep，and show the trace from left to right in Fig．5，rather than vice versa．What＇s important about the waveshapes in Fig． 4 is that both sync pulses（Y1W3，Y2W3）should have enough amplitude，duration，and be of the proper shape，for without all these your sync problems can be severe．

Color bar generator substitution

There is only a slight difference in the waveform＇s video content as we substitute a color bar signal，but the horizontal sync pulse remains the same， as Fig． 5 shows．The pulses in place of video in Y1W4 are the 11 color bars．Bar No． 12 has already been used by the generator as a sync pulse， and No． 11 will be removed by the
receiver＇s blanking circuit belore it reaches the chroma demodulator．In the chroma－luminance output，there－ fore，you＇ll only see 10 colon bars， which represent keying of the color bar oscillator at 30° intervals，pro－ ducing a rainbow sweep from burst to 300° ，inclusive．

The vertical output pulses fior all receivers are somewhat similar，but there are horizontal drive differences between tube and solid state receivers． In the tube receiver，the horzontal output signal shown in Fig． 6 （ $\mathbf{Y} \mid \mathrm{W} 5$ ）， measures 250 volts $p-p$ while the ver－ tical output（Y2W5）is almos 1000

FIG．4－A FAST SWEEP RATE IS USED to show the blanking interval｜and syric puise．

FIG．5－INTRODUCING THE COHOF BAF GENERATOR．

FIG．6－HORIZONTAL DRIVE and mentical output signals of a tube color set．
volts p－p．In addition，although the vertical waveform is universal tor all sets，the tube horizontal drive pulse must be semi－trapezoid（pulse and
sawtooth combined) to drive both inductance and resistance in the yoke and flyback circuits, while solid-state versions interface at much lower impedances and may use rectangular waves with duty cycles of approximately 50%. Whether trapezoidal or rectangular, neither waveform drives the horizontal output for more than half the total cycle, so that the output is on for only half the waveform, and only reaches dc and cutoff at its very peak.

In RCA's SCR horizontal deflection drive circuit it's worthwhile looking at all three drive and output traces (Fig. 7). Here we're dealing with silicon controlled rectifiers, and when they conduct, the output voltage drops towards dc. And when they're cut-off the output voltage rises. Therefore, the horizontal oscillator trigger (trig, W6) sends the retrace (comm. W6) into conduction and it remains in that state for $25 \mu \mathrm{~s}$. During that interval, the trace SCR cuts off and stops conducting for about $10 \mu \mathrm{~s}$. The scope trace then shows that the commutator SCR does not conduct for some $38 \mu \mathrm{~s}$, making a total horizontal sweep time of $63.5 \mu \mathrm{~s}$. The trace SCR (and diode) conducts for a total of some 53μ.

Chroma circuits

Chroma circuits are no more difficult to analyse than luminance and sync circuits, but you may not be used to the clean test patterns on some of the better sets. In these circuits the bandpass amplifiers, burst, 3.579545 mHz subcarrier oscillator, and the chroma-demodulated output are all needed to complete the analysis. So with the preset composite video signal following the video detector, the task shouldn't be that difficult. Deviations at this point, however, means there are specific problems in the receiver and they should be attended to before continuing.

Chroma and demodulator outputs should be examined first, if there is no color but good black and white. In most integrated circuit receivers, luminance information is added either in the demodulator chip itself (Fig. 1), or directly into the chroma output
amplifiers. The reasoning here is to combine luminance information and chroma (color) information before the picture tube so both signals can have identical impedances, proper ac and dc levels, and be routed to the picture tube through one set of electrodes. However, you may not see the red and blue amplifier outputs dis-

FIG. 7-RCA's SCR deflection waveforms.
W7

FIG. 8-R-Y AND B-Y OUTPUT and vector patterns.

FIG. 9-CHROMA IC AMPLIFIER OUTPUT and subcarrier sinewave.

NEW ELECTRICAL CODE ADOPTED

The National Fire Protection Association adopted the revised and corrected 1975 National Electrical Code as its standard at its meeting in Miami last Spring. The new code's publishing date is September, replacing the present 1971 edition.

The new edition contains some significant changes, relaxing provisions of the old Code in some places and tightening them in others. Thus Section 336-3 (Nonmetalic Sheathed Cable) now
permits types NM and NMC cable to be used in certain types of dwelling and other structures, and Sections 230-208 and 240-100 (Services and Overcurrent Protection) deletes requirements pertaining to visual current indication. But Section 300-15b (Wiring Methods) limits the use of certain devices without separate boxes. In several sections, some requirements that had been applied only where voltages were over 600 are now general requirements.
played as cleanly as those in Fig. 8 (R-YW6 and B-YW6) unless the luminance signal is shunted to ground with about an 80 pF capacitor.

Obviously, if you have such waveforms with the red zero reference voltage at bar six, and the blue zero reference voltages at bars three and nine; and plenty of amplitude, your chroma sections are operating well. The two $11-\mu \mathrm{S}$ rectangular pulses cut off the pix tube during line retrace. Further confirmation of the chroma section comes from the two vector patterns in Fig. 8 (W6) although the right one is upside down and the scope's horizontal and vertical polarities must be reversed to turn it right side up (left vector).

If the chroma outputs are not satisfactory, backtrack to the bandpass amplifier and see if it has an output at least in the millivolt range in semiconductor sets, (Fig. 9, top trace) and in the volt range in hybrid sets. The bottom trace of Fig. 9 is the output of the $3.58-\mathrm{MHz}$ oscillator viewed at 500 $\mu \mathrm{S} / \mathrm{div}$. If either the color information or the subcarrier reference is missing or is off frequency, then there is no demodulation and no color.

R-E's Substitution guide for replacement transistors
 PART XXI
 by ROBERT \& ELIZABETH SCOTT

ARCH-Indicates the Archer brand of semiconductors sold only by Radio Shack and Allied Radio stores. Allied Radio Shack, 2725 W. 7th St., Ft. Worth, Texas 76107
DM-D. M. Semiconductor Co., P.O. Box 131, Melrose, Mass. 02176
G-E-General Electric Co., Tube Product Div., Owensboro, Ky. 42301

ICC--International Components, 10 Daniel Street, Farmingdale, N.Y. 11735
IR-International Rectifier, Semiconductor Div., 233 Kansas St., El Segundo, Calif. 90245
MAL—Mallory Distributor Products Co., 101 S. Parker, Indianapolis, Ind. 46201

MOT-Motorola Semiconductors, Box 2963, Phoenix, Ariz. 85036
RCA-RCA Electronic Components, Harrison, N.J. 07029
SPR-Sprague Products Co., 65 Marshall St., North Adams, Mass. 01247
SYL—Sylvania Electric Corp., 100 1st Ave., Waltham, Mass. 02154
WOR-Workman Electronic Products, Inc., Box 3828, Sarasota, Fla. 33578
ZEN-Zenith Sales Co., 5600 W. Jarvis Ave., Chicago, III. 60648

Radio-Electronics has done its utmost to insure that the listings in this directory are as accurate and reliable as possible; however, no responsibility is assumed by Radio-Electronics for its use. We have used the latest manufacturers material available to us and have asked each manufacturer covered in the listing to check its accuracy. Where we have been supplied with corrections, we have updated the listing to include them. The firs part of this Guide appeared in March 1973.

	ARCH	DM	G-E	ICC	IR	MAL	MOT	RCA	SPR	SYL	WOR	ZEN
2N4348	NA	T-707	NA	ICC-707	IRTR-61	PTC 118	HEP-707	SK 3079	NA	NA	WEP-707	2EN 204
2N4349	NA	TS-3020	GE-28	ICC-S3020	NA	PTC 144	HEP-S3020	NA	NA	NA	WEP-S3020	NA
2N4350	NA	TS-3001	GE-28	ICC-S3001	NA	NA	HEP-S3001	NA	NA	NA	NA	NA
2N4352	NA	T-803	NA	ICC-803	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N4354	RS276-2021	T-708	GE-67	ICC-708	TR-19	PTC 127	HEP-708	SK 3025	RT-115	ECG 159	WEP-717	NA
2N4355	RS276-2021	T-708	GE-67	ICC-708	NA	PTC 127	HEP-708	SK 3114	RT-115	EGC 159	EP-717	NA
2N4356	RS276-2021	T-708	GE-21	ICC-708	NA	PTC 103	HEP-708	SK 3114	RT-115	ECG 159	WEP-717	NA
2N4359	NA	TS-0006	GE-67	ICC-S0006	NA	PTC 127	HEP-S0006	NA	NA	NA	WEP-717	NA
2N4360	NA	TF-1035	NA	ICC-F1035	NA	NA	HEP-F1035	NA	NA	NA	NA	NA
2N4381	NA	T-803	NA	ICC-803	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N4382	NA	T-803	NA	ICC-803	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N4383	NA	TS-3026	NA	ICC-S3026	NA	NA	HEP-S3026	NA	NA	NA	WEP-3023	NA
2N4385	NA	TS-3026	GE-63	ICC-S3026	NA	NA	HEP-S3026	NA	NA	NA	WEP-3023	NA
2N4386	NA	NA	GE-63	NA	NA	PTC 136	NA	NA	NA	NA	WEP-3020	NA
2N4387	RS276-2025	T-702	GE-69	ICC-702	IRTR-58	PTC 113	HEP-702	SK 3083	RT-133	ECG 15	0	NA
2N4388	RS276-2025	T-702	GE-69	ICC-702	IRTR-58	PTC 113	HEP-702	SK 3083	RT-133	ECG 153	WEP-700	NA
2N4389	NA	T-57	NA	ICC-57	\|RTR-54	PTC 103	HEP-57	SK 3118	RT-126	ECG 106	WEP-52	NA
2N4390	NA	T-713	GE-27	ICC-713	IRTR-87	PTC 117	HEP-713	NA	NA	NA	WEP-53	NA
2N4395	NA	T-247	GE-19	ICC-247	IRTR-59	PTC 119	HEP-247	SK 3027	RT-131	ECG 130	WEP-247	NA
2N4296	NA	T-247	GE-19	ICC-247	1RTR-59	PTC 119	HEP-247	SK 3027	RT-131	ECG 130	WEP-247	NA
2N4399	NA	TS-7001	NA	ICC-5001	TR-20	NA	HEP-S7001	NA	RT-148	ECG 180	WEP-WS7001	NA
2N4400	RS276-2009	T-736	GE-20	ICC-736	TR-21	PTC 123	HEP-736	SK 3122	RT-102	ECG 123A		IEN 120
2N4401	RS276-2009	T-736	GE-20	ICC-736	TR-21	PTC 136	HEP-736	SK 3122	RT-102	ECG 123A	WEP-735	IEN 120
2N4402	RS276-2021	T-716	GE-21	ICC-716	IRTR-54	PTC 103	HEP-716	SK 3114	RT-115	ECG 159	WEP-717	EN 107
2N4403	RS276-2021	T-716	GE-21	ICC-716	IRTR-54	PTC 103	HEP-716	SK 3025	RT-115	ECG 159	WEP. 717	ZEN 107
2N4404	NA	TS-3031	NA	ICC-S3031	IRTR-73	PTC 141	HEP-S3031	SK 3025	RT-115	ECG 129	WEP-242	A
2N4405	NA	TS-3031	NA	ICC-S3031	IRTR-88	PTC 141	HEP-S3031	SK 3025	RT-115	ECG 129	WEP-242	A
2N4406	NA	TS-3003	NA	ICC-S3003	IRTR-88	PTC 141	HEP-S3003	SK 3025	RT-115	ECG 129	WEP-242	NA
2N4407	NA	TS-3031	NA	ICC-S3021	IRTR-88	PTC 141	HEP-S3031	SK 3025	RT-115	ECG 129	WEP-242	NA
2N4409	RS276-2008	TS-0001	GE-18	ICC-S0001	IRTR-87	PTC 123	HEP-S0001	NA	RT-114	NA	WEP-712	IEN 125
2N4410	RS276-200	TS-000	GE-18	C-S00	TR	PTC 123	HEP-S000	SK 3045	RT-110	ECG 154	WEP-712	IEN 125
2N4411	NA	T-52	NA	ICC-52	TR-20	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP-717	
2N4412	NA	T-51	GE-67	ICC-51	IRTR-88	PTC 103	HEP-51	SK 3025	RT-115	ECG 129	WEP-242	LEN 101
2N4413	NA	T-716	GE-67	ICC-716	TR-20	PTC 103	HEP-716	SK 3114	RT-115	ECG 159	WEP-717	EEN 107
2N4414	NA	T-51	GE-67	ICC-51	IRTR-88	PTC 103	HEP-51	SK 3025	RT-115	G 129	WE	101
2N4415	NA	T-716	GE-67	ICC-716	TR-20	PTC 103	HEP-716	SK 3114	RT-115	ECG 159	WEP-717	ĖN 107
2N4416	NA	T-802	GE-FET-2	ICC-802	NA	PTC 151	HEP-802	SK 3112	RT-176	ECG 133	WEP-801	ĖN 123
2N4417	NA	T-801	GE-FET-2	NA	NA	PTC 152	NA	SK 3112	RT-176	ECG 133	WEP-801	NA
2N4418	NA	TS-0004	GE-20	ICC-S0004	NA	PTC 133	HEP-S0004	SK 3039	RT-113	ECG 108	WEP-56	ĊN 127
2N4419	NA	T-50	GE-20	ICC-50	TR-21	PTC 136	HEP-50	SK 3039	RT-113	ECG 108	WEP-56	ĖN 100
2N4420	NA	T-734	GE-20	ICC-734	IRTR-24	PTC 136	HEP-734	NA	RT-113	NA	WEP-723	ENN 118
2N4421	NA	T-50	GE-20	ICC/50	TR-21	PTC 136	HEP-50	SK 3039	RT-113	NA	WEP-50	EN 100
2N4422	NA	T/734	GE-20	ICC-734	IRTR-24	PTC 136	HEP-734	NA	RT-113	NA	WEP-723	N 118
2N4423	NA	NA	GE-21	ICC-52	NA	NA	NA	NA	RT-115	NA	WEP-717	
2N4424	NA	T-736	GE-20	ICC-736	TR-21	TC 123	HEP-73	K 312	TR-102	1	WEP-735	12
2N4425	NA	ts-3024	GE-20	ICC-S3024	NA	PTC 123	HEP-S3024	SK 3124	RT-102	ECG 192	WEP-735	NA
2N4427	NA	TS-3008	GE-18	ICC-S3003	IRTR-87	PTC 143	HEP-S3008	SK 3024	RT-114	ECG 128	WEP-243	
2N4428	NA	TS-3001	GE-28	ICC-S3001	NA	NA	HEP-S3001	NA	RT-154	NA	NA	NA
2N4429	NA	NA	GE-28	NA	NA	NA	NA	NA	RT-154	NA	NA	NA
2N4430	NA	NA	GE-28	NA	NA	NA	NA	NA	RT-154	NA	NA	NA
2N4432	NA	T-736	NA	ICC-736	NA	PTC 123	HEP-736	SK 3122	RT-102	ECG 123A	WEP-735	ZIN 120
2N4433	RS276-2009	T-734	GE-61	ICC-734	TR-24	PTC 132	HEP-734	SK 3018	RT-108	ECG 107	WEP-720	ZiN 118
2N4434	NA	T-709	GE-17	ICC-709	TR-21	PTC 132	HEP-709	SK 3117	RT-113	ECG 161	WEP-719	Z:N 105
2N4435	NA	T-709	GE-17	ICC-709	IRTR-65	P.TC 132	HEP-709	SK 3117	RT-113	ECG 161	WEP-719	ZiN 105
2N4436	NA	T-736	GE-20	ICC-736	TR-21	PTC 123	HEP-736	SK 3122	RT-102	ECG 123A	WEP-735	ZiN 120
2N4437	NA	T-736	GE-20	C-736	R-21	PTC 136	HEP-736	SK 312	RT-102	ECG 123A	WEP-735	7! 120
2N4440	NA	NA	GE-28	NA	IRTR-55	NA	NA	NA	RT-154	NA	NA	
2N4441	NA	SR-1220	GEMR-4	ICC-R1220	NA	NA	HEP-R1220	NA	NA	ECG 5442	NA	NA
2 N 4442	NA	SR-1221	GEMR-4	ICC-R1221	NA	NA	HEP-R1221	NA	NA	ECG 5444	NA	NA
2 N 4443	NA	SR-1222	GEMR-4	ICC-R1222	NA	NA	HEP-R1222	NA	NA	ECG 5446	A	NA
2N4444	NA	SR-1223	NA	ICC-R1223	NA	NA	HEP-R1223	NA	NA	ECG 5448	NA	VA
2N4449	NA	T-50	NA	ICC-50	NA	PTC 133	HEP-50	SK 3039	RT-113	ECG 108	WEP-56	ZEN 100
2N4450	NA	TS-0004	NA	ICC-S0004	NA	PTC 136	HEP-S0004	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 127
2N4451	NA	T-715	NA	ICC-715	NA	PTC 127	HEP-715	NA	RT-126	ECG 106	WEP-52	ZEN 106
2N4452	NA	T-716	NA	ICC-716	NA	PTC 103	HEP-716	SK 3114	RT-115	ECG 159	WEP-717	ZEN 107
2N4453	NA	T-76	NA	ICC-76	NA	PTC 127	HEP-76	SK 3118	RT-126	ECG 106	WEP-52	NA
2N4851	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4852	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZNN 129
2N4853	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4864	NA	t-241	NA	ICC-241	NA	NA	HEP-241	NA	NA	NA	WEP-241	NA
2N4867	NA	NA	GE-FET-1	NA	NA	PTC 152	NA	SK 3112	RT-176	ECG 133	WEP-801	NA
2N4868	NA	NA	GE-FET-1	NA	NA	PTC 152	NA	SK 3112	RT-176	ECG 133	WEP-801	NA
2 N 4869	NA	NA	GE-FET-1	NA	NA	PTC 152	NA	SK 3112	RT-176	ECG 133	WEP-801	NA
2 N 4870	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	LEN 129
2 N 4871	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	LEV 129

	ARCH	DM	G-E	ICC	IR	MAL	MOT	RCA	A SPR	SYL	WOR	ZEN
2N4872	NA	T-52	NA	ICC-52	NA	PTC 127	HEP-52	SK 3118	RT-126	ECG 106	WEP-52	NA
2N4873	NA	TS-0004	NA	ICC-S0004	NA	PTC 133	HEP-S0004	SK 3039	RT-113	ECG 108	WEP-56	ZEN 127
2N4874	NA	TS-3008	NA	ICC-S3008	NA	PTC 143	HEP-S3008	NA	NA	NA	NA	NA
2N4875	NA	TS-3008	NA	ICC-S3008	NA	PTC 143	HEP-S3008	NA	NA	NA	NA	NA
2N4876	NA	TS-3008	NA	ICC-S3008	NA	PTC 143	HEP-S3008	NA	NA	NA	NA	NA
2N4877	NA	TS-3010	GE-66	ICC-S3010	NA	NA	HEP-S3010	NA	RT-150	NA	NA	ZEN 207
2N4878*	NA	T-738	NA	ICC-738	NA	PTC 123	HEP-738	NA	RT-109	NA	WEP-728	ZEN 121
2N4879**	NA	TS-0007	NA	ICC-S0007	NA	PTC 144	HEP-S0007	NA	NA	NA	WEP-712	NA
2N4880*	NA	T-729	NA	ICC-729	NA	PTC 121	HEP-729	NA	RT-109	NA	WEP-729	ZEN 115
2N4890	NA	T-708	GE-67	ICC-708	NA	PTC 141	HEP-708	NA	RT-115	ECG 129	WEP-242	NA
2N4891	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4892	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4893	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4894	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4898	RS276-2025	T-702	GE-69	ICC-702	IRTR-58	PTC 113	HEP-702	SK 3083	RT-133	ECG 218	WEP-700	NA
2N4899	RS276-2025	T-702	GE-69	ICC-702	IRTR-58	PTC 113	HEP-702	SK 3083	RT-133	ECG 218	WEP-700	NA
2N4900	RS276-2025	T-702	NA	ICC-702	IRTR-58	PTC 113	HEP-702	NA	RT-133	ECG 218	WEP-700	NA
2N4901	RS276-2027	T-705	NA	ICC-705	TR-29	NA	HEP-705	NA	NA	NA	WEP-S7001	NA
2N4902	NA	T-248	NA	ICC-248	TR-29	NA	HEP-248	NA	NA	NA	WEP-S7001	NA
2N4903	NA	TS-5005	NA	ICC-S5005	NA	NA	HEP-S5005	NA	NA	NA	WEP-S5005	NA
2N4904	RS276-2027	T-705	NA	ICC-705	TR-29	NA	HEP-705	NA	NA	NA	WEP-S7001	NA
2N4905	NA	T-248	NA	ICC-248	TR-29	NA	HEP-248	NA	NA	NA	WEP-S7001	NA
2N4906	NA	T-248	NA	ICC-248	NA	NA	HEP-248	NA	NA	NA	WEP-S7001	NA
2N4907 2N4908	NA	T-248	NA	ICC-248	NA	NA	HEP-248	NA	NA	NA	WEP-S7001	NA
2N4908	NA	T-248	NA	ICC-248	NA	NA	HEP-248	NA	NA	NA	WEP-S7001	NA
2N4909	NA	TS-5005	NA	ICC-S5005	NA	NA	HEP-S5005	NA	NA	NA	WEP-S5005	NA
2N4910	RS276-2017	T-703	GE-66	ICC-703	NA	PTC 112	HEP-703	SK 3131	RT-150	ECG 175	WEP-241	NA
2N4911	RS276-2017	T-703	GE-66	1CC-703	NA	PTC 112	HEP-703	SK 3131	RT-150	ECG 175	WEP-241	NA
2N4912	RS276-2017	T-703	GE-32	ICC-703	NA	PTC 112	HEP-703	SK 3131	RT-150	ECG 175	WEP-241	NA
2N4913	NA	T-247	GE-19	ICC-247	TR-59	PTC 118	HEP-247	SK 3027	RT-131	ECG 130	WEP-247	NA
2N4914	NA	T-247	GE-19	ICC-247	TR-59	PTC 118	HEP-247	SK 3027	RT-131	ECG 130	WEP-247	NA
2N4915	NA	T-247	GE-14	ICC-247	NA	PTC 118	HEP-247	SK 3027	RT-131	ECG 130	WEP-247	NA
2N4916 2N4917	RS276-2023	T-52	GE-22	ICC-52	TR-20	PTC 103	HEP-52	SK 3025	RT-115	ECG 159	WEP-717	NA
2N4917 2N4918	RS276-2023	T-52 T-700	GE-21	ICC-52	NA	PTC 103	HEP-52	SK3114	RT-115	ECG 159	WEP-717	NA
2N4918	RS276-2027	T-700	GE-29	ICC-700	NA	NA	HEP-700	NA	RT-153	ECG 185	WEP-WS5007	NA
2N4919	RS276-2026	T-246	GE-29	ICC-246	IRTR-77	NA	HEP-246	NA	RT-153	ECG 185	WEP-WS5007	
2N4920	NA	TS-5006	GE-69	ICC-S5006	NA	NA	HEP-S5006	NA	RT-153	ECG 185	WEP-WS5007	NA
2N4921	RS276-2018	T-245	GE-28	1CC-245	NA	PTC 110	HEP-245	NA	RT-152	ECG 184	WEP-WS5003	ZEN 202
2N4922	RS276-2018	T-245	GE-28	ICC-245	NA	PTC 110	HEP-245	SK 3054	RT-152	ECG 184	WEP-WS5003	$\text { ZEN } 202$
2N4923	RS276-2018	T-245	GE-28	ICC-245	NA	PTC 110	HEP-245	NA	RT-152	ECG 184	WEP-WS5003	ZEN 202
2N4924	NA	T-713	GE-27	ICC-713	NA	PTC 144	HEP-713	SK 3045		ECG 154		
2N4925	NA	T-712	GE-32	ICC-712	IRTR-78	PTC 117	HEP-712	SK 3045	RT-110	ECG 154	WEP-712	$\begin{aligned} & \text { NA } \\ & \text { ZEN } 205 \end{aligned}$
2N4926	NA	T-712	GE-27	ICC-712	IRTR-78	PTC 117	HEP-712	SK 3045	RT-110	ECG 154	WEP-712	ZEN 205
2N4927	NA	T-712	GE-27	ICC-712	IRTR-78	PTC 117	HEP-712	SK 3045	RT-110	ECG 154	WEP-712	ZEN 205
2N4928	NA	T-710	NA	NA	IRTR-88	PTC 127	NA	SK 3025	RT-115	ECG 129	WEP-242	NA
2N4932	NA	NA	NA	NA	NA	PTC 128	NA	NA	NA	NA	NA	NA
2N4934	RS276-2011	T-56	NA	ICC-56	IRTR-66	PTC 133	HEP. 56	SK 3039	RT-113	$\text { ECG } 108$	WEP-56	ZEN 104
2N4935	RS276-2011	T-56	NA	ICC-56	NA	PTC 133	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N4936	NA	T-56	NA	ICC-738	NA	PTC 133	NA	SK 3039	RT-113	$\text { ECG } 108$	WEP-56	$\text { ZEN } 121$
2N4937*	NA	T-715	GE-21	ICC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	$\text { ZEN } 106$
2N4938*	NA	T-715	GE-21	ICC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	ZEN 106
2N4939*	NA	T-715	NA	1CC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	ZEN 106
2N4940*	NA	T-715	GE-21	ICC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	ZEN 106
2N4941**	NA	T-715	GE-21	ICC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	$\text { ZEN } 106$
2N4942*	NA	T-715	NA	ICC-715	NA	PTC 127	HEP-715	NA	RT-115	NA	WEP-715	$\text { ZEN } 106$
2N4943	NA	T-714	NA	ICC-714	IRTR-87	PTC 144	HEP-714	SK 3024	RT-114	ECG 128	WEP-243	NA
2N4944	NA	T-714	GE-20	NA	IRTR-87	PTC 123	NA	SK 3024	RT-114	ECG 128	WEP-243	NA
2N4945	NA	T-714	GE-18	NA	IRTR-87	PTC 123	NA	SK 3024	RT-114	ECG 128	WEP-243	NA
2N4946	NA	T-714	GE-20	ICC-714	IRTR-87	PTC 123	HEP-714	SK 3024	RT-114	ECG 128	WEP-243	NA
2N4948	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4949	NA	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	NA	WEP-310	ZEN 129
2N4950	NA	NA	GE-20	NA								
2N4951	NA	TS-0004	GE-20	ICC-S0004	NA	PTC 136	HEP-S0004	SK 3124	RT-102	ECG 123A	WEP-735	ZEN 127
2N4952	NA	TS-0004	GE-20	ICC-S0004	NA	PTC 136 H	HEP-S0004	SK 3124	RT-102	ECG 123A	WEP-735	ZEN 127
2N4953	NA	T-736	GE-10	ICC-736	TR-2	PTC 136	HEP-736	SK 3124	RT-102	ECG 123A	WEP-735	ZEN 120
2N4954	NA	TS-0004	GE-10	ICC-S0004	TR-2	PTC 136 H	HEP-S0004	SK 3124		ECG 123A		
2N4955	NA	T-737	NA	ICC-737	NA	NA	HEP-737	NA	RT-109	NA	WEP-735	NA
2N4956*	NA	T-724	NA	$1 \mathrm{CC}-724$	NA	PTC 121	HEP-724	NA	RT-105	NA	NA	ZEN 112
2N4960	NA	TS-3001	NA	ICC-S3001	IRTR-87	PTC 123 H	HEP-S3001	SK3024	RT-114	ECG 128	WEP-243	NA
2N4961	NA	TS-3002	NA	ICC-S3002	IRTR-87	PTC 123 H	HEP-S3002	SK 3024	RT-114	ECG 128	WEP-243	NA

*Indicates a dual transistor for high-speed switching, diff amplifier etc. Likely to be a matched pair. Use two of the type specified, matching when necessary, on a curve tracer or lab-type transistor checker.
NA = NOT AVAILABLE

RE＇s Service Clinic

RC networks and different waveforms

The effects are weird if you
by JACK DARR
SERVICE EDITOR

WHILE WORKING IN MY LABORATORY recently，doing research on the be－ haviour of special test signals．（Trans－ lation；I was goofing off in the shop， playing with a function generator！）I ran across some interesting things．

$$
f \approx 3 \mathrm{kHz}
$$

INPUT

This column is for your service problems－TV，radio，audio or general and industrial electronics．We answer all questions individually by mail，free of charge and the more interesting ones will be printed here．

If you＇re really stuck，write us．We＇ll do our best to help you．Don＇t forget to enclose a stamped，self－addressed en－ velope．If return postage is not includ－ ed，we cannot process your question． Write：Service Editor，Radio－Electron－ ics， 200 Park Ave．South，N．Y． 10003.

from a function generator；sine，square and triangular waveforms．I fel these through the two stock R－C network hook－ups；a differentiator and En inte－ grator．A quick look at the setematic of any kind of electronic equ pment will show you lots of these thins．

Figure 1 shows the circuits used． Look at these．Now，draw your idea of what the output waveform looks like，and see if you can explain it． After you get through，read cn and see what I actually got，and my idea of why．Have fun！

The answers．

Figure 2 shows the inputs to the differentiator circuit and the jutput waveforms I saw on the scope

1．Almost everybody should get this one，or get close．The differeatiator makes a spike waveform from a quare wave．This is used in mary pulse generator circuits．
DIFFERENTIATOR
output

2．This one fooled me．Hovever， you can see what happened．The time constant is long enough so thet the capacitor reaches full charge so，it rounds off the leading edge of the square wave．

3．This is the wipe－out．What hap－ pended？Nothing．Output wavoform
exactly the same as the input! We'll explain that in a minute. Go on to Figure 3. This is the integrator.
4. Surprise! An integrator makes a triangular wave out of a square wave. This is used in function generators to develop a triangular wave.
5. Look at this one. Integrating a triangular wave makes a sinewave. Another method used in function generators, although theirs is much
more elaborate.
6. Here we go again. Nothing happens, just as before.

Wha' Hoppen?

How come this reaction? Frankly, I expected to see a change in waveform in all of them. When the sinewave came through undisturbed, I couldn't believe it. Back to the books. Here is the best explanation I could

$$
f \approx 30 \mathrm{kHz}
$$

INTEGRATOR

> INPUT

(4)
(5)

(6)

OUTPUT

find, after quite a bit of digging around.

As briefly as possible, both square and triangular waves can be considered as being made up of innumerable harmonics! The charging of the capacitor and the action of the resistor affects these; the waveform is distorted, although its fundamental frequency is still the same.

The really odd effect is the reaction on the sinewave. Why doesn't the R-C network upset it, as it does all others? Here's what they say.

A sinewave, especially one with very low distortion, is considered as a "pure signal." That is, it's not made up of harmonics, but is just a single frequency, theoretically without any harmonics at all! So, you'll see practically no effect on the waveform. Most of what you will see will be only a small loss in amplitude.

You can try this yourself, with any audio signal generator and scope. It's fascinating. Try different values for \mathbf{R} and C, and different frequencies. If you don't have a square-wave signal generator, feed the sinewave output into a pair of low-voltage Zeners, tied in parallel and reversed. This will make a fair square wave. You can get the triangle by feeding the square wave into a separate integrator, and then feeding the resultant into another $\mathrm{R}-\mathrm{C}$ network. (continued on page 72)

FIG. 3

RCA's versatile WO-535A. .
 DC to 10MHz response for only $\$ 349$.*

1. Operates in either triggered or recurrent sweep mode.
2. Vertical sensitivity of 5.9 mV p-p/cm ($15 \mathrm{mV} / \mathrm{in}$).
3. Simplified calibration for p-p voltage measurements.
4. All solid state.
5. DC/AC input.
6. Preset TV, " V " and " H " frequencies for instant lock-in.
7. Flat-face 5-inch CRT.
8. Illuminated graph screen calibrated directly in volts.
9. Regulated power supply prevents trace bounce; excellent stability.

10. Return-trace blanking.

-Optional price including probe.
11. Terminals for direct connection to the CRT.
12. Camera mounting studs.
13. Phase control for sweep alignment.
14. Includes WG-400A shielded Direct/LowCapacitance Probe and Cable.

For complete information and fast delivery on the versatile WO-535A, Dual Mode Oscilloscope, contact any one of the more than 1,000 RCA Distributors worldwide. Or write: RCA Electronic Instruments Headquarters, Harrison, N.J. 07029.

Specialists demand the best tools of their trade

A POCKET-SRE MULTMETE: TO GO.

MODEL 245, ACTUAL SIZE

This rugged, truly miniature, lab-quality $4 \frac{1}{2}$ digit multimeter measures DC volts, AC volts, DC current, AC current and resistance with . 005% resolution.

Data Precision's Model 245 is the smallest, lightest and most accurate $4 \frac{1}{2}$ digit multimeter you can buy.

It's a revolutionary instrument with basic accuracy of $\pm 0.05 \%$.

Rechargeable battery and line operated, Model

245 provides fast, reliable and incredibly precise nisasurements in the lab, on-site or anywhere else aninccurate reading is essential.

Small enough to fit in the palm of your hanc, lig enough to do whatever you want it to do, here's a n e er that will meet your most exacting needs.

If all you're looking for is a reliable bench DMM - a low cost instrument that's actually price competitive with analog meters - then Data Precision's Model 134 is probably just what you've been looking for.

Big, bright, easy to read, $1 / 2^{\prime \prime}$ high, $3-1 / 2$ digit display.

Model 134 measured DC and AC volts, DC and AC current and resistance through a total of 22 range scales. No interpolations are necessary. And the specs speak for themselves: basic accuracy of $\pm 0.2 \%$ reading $\pm 0.2 \%$ f.s. with autopolarity, auto-decimal positioning and 100% overrange.

Optional High Voltage Probe available for both 245 and 134

Data Precision Corporation
Audubon Road, Wakefield. MA 01880
Phone (617) 246-1600

A Full Range 5-Functicn1 3-1/2 Digit Multimeter'

To get your hands on these meters, simply contact the representative nearest you for immediate deliver $\%$.

AL	(205) 533-5896	MA	(617) 273-0198	NY (S)	(516) 4823500
AZ	(602) 994-9519	MD	(301) 552-2200	OH (N)	(216) $725 \cdot 55 \% 0$
CA	(N) (408) 733-9000	MII	(313) 482-1229	OH (S)	(513) $885-1171$
CA	(S) (714) 540-7160	MN	(612) 781-1611	OR	(503) 2380001
CO	(303) 449-5294	MO (W)	(816) 737-0066	IX (N)	$(214) 2344137$
CT	(203) 525-7647	MO (E)	(314) 731-2331	TX (S)	(713) 461443
FL	(813) $294-5815$	NC	(919) 787-5818	UT	(801) 2683111
GA	(404) 457-7117	NJ (S)	(215) 925-8711	WA	(206) 763-2210
HI	(808) 262-6286	NJ (N)	(201) $863-5660$	CAN (W)	(416) $787 \cdot 1218$
H	(312) 593-0282	NM	(505) 265-6471	CAN (W)	(613) 772.5874
IN	(317) 293-9827	NY (N)	(315) 446-0220	CAN (E)	(514) 731.93 28

Now-the handiest book on electronics you'll ever own-

The Electronics Vest Pocket Reference Book -yours for only 99!!

And you'll also receive a RISK-FREE Trial Membership in The Electronics Book Service.
(No obligation ever to buy ANY minimum number of books.)

When the ELECTRONICS VEST POCKET REFERENCE BOOK was first offered to members of the ENCE BOOK was first offered to members of the
ELECTRONICS BOOK SERVICE, they gobbled it ELECTRONICS BOOK SERVICE, they gobbled it up in unprecedented quantities. No other offering had ever been so well received. So great was its acceptance, in fact, that we became convinced tha everyone in the field of electronics should have a copy of Harry Thomas's handy compendium of indispensable information-have it on his desk or bench, or in his pocket, at all times.
So we have made special arrangements with the publisher to let you have a copy of ELECTRONICS VEST POCKET REFERENCE BOOK for just 99 c when you accept a risk-free trial membership in the Electronics Book Service-a unique and practica way to advance your career . . . add to your income and enjoy your hobby.
In the pages of the ELECTRONICS VEST POCKET REFERENCE BOOK you'll find tables, lists, formulas, laws-all sorts of information and material necessary to anyone, novice or expert, who works with electronic or electrical equipment, in any branch of its technology
Packed full of vital material and indispensable information, ELECTRONICS VEST POCKET REFER ENCE BOOK explains and illustrates principles that are applicable in all branches of electronics. Whatever you're looking for, you'll quickly find it in this handy reference tool-simply by reaching into your vest pocket and flipping a few pages. It's as simple as that. There's hardly a page in this book that doesn't contain illustrative material of some kind. You'll find scores of equations, formulas, charts, graphs, and diagrams-all of which help to make the printed information absolutely clear. A separate box in this advertisement gives you a bare outline of the contents of the ELECTRONICS VEST POCKET REFERENCE BOOK-but only when you see it for yourself will you realize just how continually valuable it can be to you.

What membership in the
 ELECTRONICS BOOK SERVICE means to you

1. When you enroll as a member, you will receive at a token price (plus postage and handling with tax where applicable) the introductory selection described elsewhere in this offer.
2. Thereafter you will receive approximately once a month (but no more than 13 times per year), a free bulletin describing the forthcoming selection. If you want the selection, no further action is required... it will be shipped to you automatically. If you don't want it, just return the card that accompanies the bulletin.
3. You have 10 days to decide whether you want the selection or not. Return the card so we receive it no later than the date specified. If you don't have to days to answer and receive an unwanted selection, return it at our expense.
4. Any selection you decide to buy will be billed to you at the exclusive member's price, which saves you at least 15% off the publisher's regular list price.
(Your regular bulletin also describes a number of alternate selections, also available to you at the special member's prices.)
5. There is no obligation to purchase any minimum number of selections. Your only obmigation is the token price you pay for your introductory selection. You may purchase as many or as few as you wish, and you will be under no pressure to buy any more. And you may resign at any time without obligation, once you have paid for your introductory selection.

THE ELECTRONICS VEST POCKET REFERENCE BOOK IS DIVIDED INTO SIX SECTIONS
I. Electronics Laws and Formulas: Ohm's Law; Resonance in AC Circuits; How to Calculate Decibels; Radar Band Codes and Frequencies; TV Channel Frequencies; others.
II. Constants, Standards, Conversion: International System of Units (SI); Physical and Electrical Conversion Factors: Electronic Constants, Multiples, and Sub-Multiples; others.
III. Symbols, Components, Codes: Electronic Circuit and Component Symbols; Summary of Resistor Types; Diode Symbols, Characteristics and Applications; Coaxial Cable Types and Sizes; others.
IV. Mathematics, Mechanics, Charts: Computer Number Codes; Number Functions; Powers of Numbers; Four Place Log Tables; Twist Drill Sizes; others.
V. Circuits, Instruments, Measurements: Common DC Bridges; Common AC Bridges; Fuse Data Basic Rectifier Circuits; Transistor Test Circuits; others.
V1. Microwave Hardware and Micro-electronics: Screws, Bolts, Nuts and Washers; Transducer Types; Date Display Devices; Thermistor Types and Sizes; others.

- AC and DC Circuits and Measurements - Transistor Circuit Analysis Color TV Servicing Electric and Electronic Circuits - Frequency Modulation Receivers * Electronic Switching Circuits - Electron Devices and Circuits - Special Purpose Transistors - Electronic Tests and Measurements - Solid State TV Systems
—plus many other guides, including handbooks and data books, to circuitry, radio, TV and electronic equipment, and math and physics of electronics, and all related areas of significance to you. In an area in which novelty today is old hat tomorrow, there is no better way to keep on top of the changing technology-no more practical way for you to build an electronics library of permanent value to you-at your own pace and in line with your own special interests.

Start saving now!

Just mail the coupon below to get your copy of the ELECTRONICS VEST POCKET REFERENCE BOOK for only 99c-and to receive all the benefits of membership in the Electronics Book Service on a RISK-FREE trial basis. Don't wait another day for this valuable, money-making knowledge. Send the coupon.
Electronics Book Service, Dept. 6699-P1(4)
Englewood Cliffs, New Jersey 07632
Please enroll me in Electronics Book Service on a risk-free basis. I am to receive all announcements, free of charge, and I will be entitled to full privileges as a Member without obligation to buy any specific number of club selections. As my first selection under this trial membership, send me the
ELECTRONICS VEST POCKET REFERENCE BOOK for only 99 c .

Address
City \qquad State Zip

SERVICE CLINIC

(continued from page 70)

reader questions

THE "REGAUSSING" COIL

Originally, this Motorola TS-914 chassis came in with the circuitbreaker tripping. Replaced a bad diode in the voltage-doubler-no help. The resistor in parallel with the degausser coil was open and I replaced it. When I turned the set on, there was a spark from somewhere. After this the breaker didn't trip any more.

The purity is lousy. The best I can get is a 12 -inch red circle in the middle with blotches around the edge. I cooked it for 6 hours. While this was going on, I noticed that the purity began to get worse around the edges. Manual degaussing will clear it up, but it comes back in a few hours.

I'm at a loss. HELP!-D.S. Oregon, OH .
The trouble is in the auto degausser circuit. It is obviously "re-gaussing" the tube! In this chassis, the most likely suspect would be the thermal degaussing switch. This could have been where your arc was. If the points have welded, this leaves the coil in-circuit all the time, and this causes impurity.

NO SNOW, THAT'S BAD

This Sylvania DO3 has been pretty well overhauled; tuner, new filters and so on. I'm still not happy with it. The age control doesn't have the proper effect. Also, I have no snow on unused channels, nor with the antenna off. Distant stations won't come in, though the owner says they used to. Colors aren't good, even on local stations. What do you think?-R.D., Panama City, FL.

I think you're "losing it," somewhere. This set obviously doesn't have enough gain. The no-snow symptom is almost always an indication of very poor rf or i.f. gain. This could be due to one of two things.

Excessive negative age voltage could be holding the gain down. This is the easy one. Clamp the age to +18 volts. If this sounds funny in a tube set, remember that the 1st i.f. cathode is +21 volts above ground so that the actual age bias on the tube is a -3 volts. If this brings the snow and the colors back, check out the dc voltages
(continued on page 78)

Our town

Miami Beach yisitors come to＂our town＂to stay at the famous oceafi front hotels and enjoy the temperate southern climate．And when the：e vaca－ tioners visit the lively Miami Beach nightclubs and show rooms，the＂l want to hear the entertainers as well as see them perform．That＇s why sound technicians at most of the leading hotels＂on the beach＂rely on Shure microphones and Vocal Master Sound Systems for top performance and dependability．From a top show at a famous hotel to a huge political ciznven－ tion，Shure provides the sound Miami Beach professionals prefer．

CII graduate builds two-wy ratio service husiness into $1,000,000$ electronics company!

Abstract

How about YOU? Growth of two-way transmitters creates demand for new servicemen, field and system troubleshooters. Licensed experts can make big money. Be your own boss, build your own company. And you don't need a college education.

Two-way radio is booming. There are already nearly seven million two-way transmitters for police cars, fire department vehicles, taxis, trucks, boats, planes, etc., and Citizens Band uses. And the number keeps growing by the thousands every month. Who is going to service them? You can - if you've got the know-how!

Why You'll Earn Top Pay

One reason is that the United States Government doesn't permit anyone to service two-way radio systems unless he's licensed by the FCC (Federal Communications Commission).

Another reason is that when two-way radio men are needed, they're really needed! A two-way radio user must keep those transmitters operating at all times. And, they must have their frequency modulation and plate power input checked at regular intervals by licensed personnel to meet FCC requirements.
As a licensed man, working by the hour, you would usually charge at least $\$ 5.00$ per hour, $\$ 7.50$ on evenings and Sundays, plus travel expenses.

Or you could set up a regular monthly retainer fee with each customer. Your fixed charge might be $\$ 20$ a month for the base station and $\$ 7.50$ for each mobile station. Studies show that one man can easily maintain at least 135 stations-averaging 15 base stations with 120 mobiles! This would add up to at least $\$ 12,000$ a year.

Edward J. Dulaney, Scottsbluff, Nebraska, (above and at right) earned his CIE Diploma in 1961, got his FCC License and moved from TV repairman to lab technician to radio station Chief Engineer. He then founded his own two-way radio business. Now, Mr. Dulaney is also President of D \& A Manufacturing, Inc., a $\$ 1,000,000$ company building and distributing two-way radio equipment of his own design. Several of his 25 employees are taking CIE courses. He says: "While studying with CIE, I learned the electronics theories that made my present business possible."

Be Your Own Boss

There are other advantages, too. You can become your own boss - work entirely by yourself or gradually build your own fully staffed service company. Of course, we can't promise that you will be as successful as Ed Dulaney, or guarantee that you'll establish a successful two-way radio business of your own, but the opportunities for success are available to qualified, licensed men in this expanding field.

How To Get Started

How do you break in? This is probably the best way:

1. Without quitting your present job, learn enough about electronics fundamentals to pass the Government FCC exam and get your Commercial FCC License.
2. Then get a job in a two-way radio service shop and "learn the ropes" of the business.
3. As soon as you've earned a reputation as an expert, there are several ways you can go. You can move out and start signing up and servicing your own customers. You might become a franchised service representative of a big manufacturer and then start getting into two-way radio sales.
Cleveland Institute of Electronics has been successfully teaching Electronics for over 37 years. Right at home, in your spare time, you learn Electronics step by step.

CIE's AUTO-PROGRAMMED ${ }^{*}$ Lessons remove the roadblocks by using simple, concise examples. You learn in small, compact steps - each one building on the other!

You'll learn not only the fundamentals that apply to all electronics design and servicing, but also the specific procedures for installing, troubleshooting, and maintaining two-way mobile equipment.

You Get Your FCC License. . .

or Your Money Back!

By the time you've finished your CIE course, you'll be able to pass the FCC License exam. A recent survey of 787 CIE graduates reveals that better than 9 out of 10 CIE grads passed the FCC License exam. That's why we can offer our famous Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License - or your money back!

It's Up To You

Mail the reply card for two FREE books, "Succeed in Electronics" and "How To Get A Commercial FCC License." For your convenience, we will try to have a representative call. If card has been removed, mail coupon or write: Cleveland Institute of Electronics, Inc., 1776 E. 17th St., Cleveland, Ohio 44114.

APPROVED UNDER G. I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.
1776 East 17th Street. Cleveland, Dhio 44114 Accredited Member National Home Study Council
Please send me your two FREE books:

1. Your book on "How To Get A Commercial FCC License."
2. Your school catalog, "Succeed in Electronics."
I am especially interested in:

\square Electronics Technology	\square Electronic Communications
\square Broadcast Engineering	\square Industrial Electronics
\square First Class FCC License	\square Electronics Engineering

Name
(Please Print)
Address
City
State___Z___ Age_-_
\square Veterans \& Servicemen: Check here for G. I. Bill informaticn RE: B_{B}

SERVICE CLINIC

(continued from page 72)
around the agc tube. Remember that the schematic voltages are read with no signal. These are all critical voltages.

Second possibility is a problem of low gain in either the rf amplifier or possibly the 1 st or 2 nd video i.f. stages. Check all dc voltages and the tubes, etc.

While you're there, check the 5.6megohm resistor from the rf agc terminal to +265 volts. This is supposed to provide a small positive voltage to keep the age from going too far negative. If it's open, you'll often get the type of symptom you have.

G-E M110YBG HINT

On the G-E M110YBG and other SY chassis models, they use a copper strip bolted to the top front horizontal bar of the chassis as the ground for the Aquadag coating on the picture tube. If the Aquadag burns off or has poor contact here, it will arc. This will radiate and mess up the horizontal sync. Fix this ground. Use a spring, or another thin strip like that used to ground the tuner. I've done this on several of these sets.

Thanks very much to Paul Fleming of Dallas, Texas for this one.

APPLIANCE CLINIC
(continued from page 24)
covered, this should read approximately 15,000 ohms or more. Now uncover the cell and let light hit it. The resistance should drop to somewhere around 1500 to 2000 ohms. The higher the intensity of the light, the lower the resistance. The relay should now close if power is applied to the unit. If it won't move, turn the power off and connect a jumper clip lead across the photocell. The armature should now close unless the coil has some shorted turns.

Figure 2 shows the schematic of a larger unit, used with the mercuryvapor lamps. Note the similarity. This one has a temperature-sensitive resistor mounted in shunt with the photocell and coil. Some units have a sensitivity control, so the lamp can be turned on at any desired level of outside light. (Some of these can be so sensitive that they turn on when the weather is fairly cloudy!)

The control unit in Fig. 1 is practically instantaneous. With the larger units in Fig. 2 and mercury-vapor lamps, there will be about one or two second delay. This isn't due to the control unit but rather the characteristics of a mercury-vapor lamp. These are actually "arc lamps," and it takes

FIG. 2
a little time for the arc to form. This delay will be almost impossible to notice during normal operation. However, during a violent thunderstorm with its associated bright flashes of lightning, you may notice the lamp going off. It may stay off for a moment, especially after a very bright flash. The photocells in this case are said to be temporarily "blocked". This is caused by very high-intensity light, just as human vision is temporarily blinded. This won't do any permanent damage, unless of course the unit takes a direct lightning hit.

Here's everything you'd expect from a high-priced signal generator. Except a high price.

Our new B\&K Model 2050 Solid-state RF Signal Generator has features other companies charge much more for. Look at our specs: 100% Solidstate silicon circuitry with FET's in RF and audio oscillator stages. 6 bands with 1.5% accuracy from 100 kHz to 30 MHz .3 outputs: RF, modulated RF (400 Hz), and externally modulated RF. Positive anti-backlash dial drive. Zener-regulated power supply. You needn't pay high prices for versatility, accuracy and reliability - now there's the Model 2050. And that's just what you'd expect from B \& K.

Contact your distributor, or write Dynascan Corporation.
s10700

Very good equipment at a very good price. Dynascan Corporation 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

Here's everything you'd expect from a high-priced Hi-Low FET multimeter. Except a high price.

Introducing the B\&K Model 290 solid-state FET Multimeter. Just by glancing at its specs, you can tell that the 290 is capable of more applications than any other multimeter in its class. 75 ranges. Hi-Lo power ohms ranges (low power only 33 mV). 15 megohms input impedance. A large 7 "meter. 50 mV to 1500 V full-scale sensitivity on both AC and DC. 50 micro-amp current range. Rx0.1 ohm range with 1 ohm center scale lets you measure low resistance down to .01 ohm . Circuit provides automatic overload protection with fuses and spark gaps. More multimeter for your money - that's
 just what you expect from B \& K. Contact your distributor, or write Dynascan Corporation. Model 290 Hi -Low FET Multimeter including Model PR-21 Probe: $\$ 151^{00}$

ก®W
 bcoudberged
 here are excias NEWERI

 NOW ．．．PROTO PI PT 1

 NOW ．．．PROTO PI PT 1
 New Proto Board 203 with built－in regulated short－proof $5 V$ ，

test equipment for the hobbyist！

 1AMP power supply．Ready－to－use．Just plug－in and starnal signals． 2 extra floating 5 －way bower switch indicator lamp and Completely self－contained with power All metal construction．．． power fuse． 24 cracking like plastic cases．Tw well as technically． no chipping or crackeng PB203 asthetically，as well pleasing．

Build and test circuits as fast as

 Build and can think without soldering or patch think without cords with NEWHere are four versatile new Continental speciations Proto Boards，made from convenien let you make of QT Sockets and Bus strips， all circuit and power intercomile power common solid $\# 22$ wire， wiring a snap． distribution busses make wher solid work Aluminum base prfect ground plane．Rubber surfaces and perratching．Each Proto Board feet prevent scratcore 5 －way binding features one or morystem or power posts to tie ind．And all are compatible supply ground and linear ICs，in T05s， with digital and discrete components． DIP packs and
Each is assembled and ready－to－use．

Proto Board 102．Compact． $12 \cdot 14$
pin DIP capacity． $7^{\prime \prime}, 4^{1 / 2}, \mathbf{3}^{\prime \prime} \cdot \mathbf{9 5}$ For the economy－minded student or experimenter ．．． Here＇s a low cost，big 10 IC capacity breadboard kit with all the quality of QT Sockets and the best of the Prov Board series ．．．complete dit and screw． the last nut，bo 2 a sockets； Includes 2 QI－35S 25 Bus Strip； 25 －way 1 QT－35B Bosts； 4 rubber bet．screws，nuts，bolts； and easy assembly instructions．
COMPLETE KIT ．．．

NEW！PROTO－CLIP for power－on， hands－off signal tracing．Eliminates shorting leads．．．and costs under $\$ \mathbf{S}$

 $\$ 995$ ORDER YOURS TODAY！ Bring ic leads up from pc board for fast signal tracing and trouble－ shooting．inject signals．Wire unuse circuits into boards．Scope probes and test leads lock onto dyds－off （see circle）inset plastic construction testirg．New plastic consts．Non－ eliminates spral／silver corrosive nickermul－ contacts low resist－ ance connections． Narrow throat for high density po boards．
Breadboard Assemblies

Proto Board 103. 2，250 solderless tie points．（4） 5 －way binding posts．
24.14 pin DIP
${ }^{2 \prime \prime} \times 6^{\prime \prime}=9 \mathbf{S a}^{95}$
$9^{\prime \prime} \times 6^{\prime \prime}$ ．

Proto Board 101.
Compact．Inexpensive．
$10-14$ pin DIP capacity
$5.8^{\prime \prime}$ long $\times 4.5^{\prime \prime}$ wide． 2995 Available off－the－shelf at your local distributor or order directly from Continental Specialties．Phone charges accepted for inquiries invited Express．Write for Free catalog Dealer inquiries Continental Specialties Corporatio

Continental Specialties Corporation 651
44 Kendall St．，Box 1942，New Haven．Cond
Telephone：（203）62
CANADA：thru Len Finkier，Ltd．
Available thru

BUILD A PHOTOFLASH

(continued from page 37)

Series capacitor bank forming operation

Plug in the ac power line and turn the power switch to on. Before triggering the photoflash unit, allow the unit to charge for no less than three hours, overnight is even better.

After the minimum charging period, or overnight, attach a camera sync cord to the camera sync socket and with a pin or small piece of wire, short the end terminals to trigger the flash. Then allow 3 to 7 seconds for
the recycle power to build-up. Then re-trigger the unit for approximately 30 flashes. The combination of 3 hour charge and repeated flashing will complete the forming operation and the flash unit will be ready to use with your camera.

Always trigger your flash unit several times before beginning to take pictures to assure maximum power output. Unused units will gradually de-form with age, and it is recommended that the forming operation be followed once every two to three months for better operation and to extend the life of the capacitors.

Circle 25 on reader service card

Operation

Bare-bulb operation, without a reflector, usually has a guide number of 30 for a 200 watt-second power output, and as high as 150 with reflector for ASA 25 film. Guide numbers are just that... a guide to use as a starting point for proper exposure. I recommend running a test film of varied exposures and shutter speeds to determine the proper guide number for your type of use. This involves shooting a series of pictures on a good resolution film, one rated at ASA 30 to ASA 65. Bracket your exposures 4 stops up and 4 stops down from $\mathrm{f}-8$ at a shutter speed of $1 / 100$-second.

Always use a maximum shutter speed of $1 / 60$ th of a second for cameras with focal plane shutters since the photoflash triggers at X or zero-delay shutter setting.

Troubleshooting the photoflash unit.

If you have properly made the circuit boards and installed each component properly, there should be no difficulty encountered in operating the unit. Usually, during the initial forming operation, considerable heat will be radiated from R1, and the possibility of the fuse blowing exists. This can be caused by excessive leakage of capacitors C3 and C4 that will correct its-self after completing the forming operation. It can also be caused by connecting the polarity of the capacitors incorrectly. Should your fuse blow, check the capacitor polarity FIRST.

Should the flash tube fail to fire, remove the flash tube from it's socket and measure across the socket pins with a DC Voltmeter. The positive lead of the voltmeter to pin 2 and the negative lead to pin 4. It should measure 450 volts. Should you be unable to measure the voltage; turn off power switch, open top, and check the following:
check 1 Open fuse
check 2 Open R1
check 3 Incorrect polarity of capacitors C3 and C4
check 4 Open or shorted D1, D2, D3
check 5 Incorrect polarity of capacitors C 1 or C 2
check 6 Open connection between power circuit and trigger circuit
For those who would like to construct a bare bulb electronic photoflash unit but would prefer to assemble a kit, there is a kit for the Uniflash barebulb photoflash produced by Mitchell Enterprises, P.O. Box 1372, San Francisco, CA. 94101.

NEW IN DVM＇s

（continued from page 49）
COLD－CATHODE DISPLAY TUBES and other similar lamps indicate voltage， current and resistance measurements on the Heathkit model $1 M$－ $10231 / 2$－digit dmm．Most voltage and current ranges have overrange capability and an over－ range indicator is provided．Polarity of dc voltage and current is automatically detected and displayed．Decimal－point positioning is automatic on each range．

Dc voltage ranges are $200 \mathrm{mV}, 2,20$ ， 200 and 1000 volts．Input impedance is greater than 100 megs on the first range， greater than 1000 megs on the second and 10 megs on the 20,200 and $1000-$ volt ranges．Accuracy is $\pm 0.2 \% \pm 1$ digit．Overrange capability 20%－sub－ ject to overload protection limits．Reso－ lution（ $200-\mathrm{mV}$ range）is $100 \mu \mathrm{~V}$ ．

Ac voltage ranges same as dc；input impedance is 1 megohm／ 150 pF ．Over－ load protection 250 Vrms on lowest two ranges； 500 Vrms on the top three．Ac－ curacy ranges from $\pm 0.75 \% \pm 1$ digit to $\pm 1.5 \% \pm 1$ digit．

Current ranges（dc and ac）： $200 \mu \mathrm{~A}$ ，

2， 20 and 200 mA and 2 A．Accuracy $\pm 0.3 \% \pm 1$ digit on dc， $\pm 1.0 \% \pm 1$ digit on ac．

The $I M-102$ is $3 \times 7.9 \times 7$ in．， 4 lbs ． \＄239．95．
AUTO－RANGING AND LOW－POWER OHMS are but two of the features of the Keithley model 168 dmm ．The five func－ tions give you the capabilty of measur－

ing $100 \mu \mathrm{~V}$ to $1000 \mathrm{Vdc}, 100 \mu \mathrm{~V}$ to 500 $\mathrm{Vac}, 100 \mathrm{nA}$ to 1 amp ac and dc and 100 milliohms to 20 megohms．Input resistance is 10 megs on dc and 9 megs shunted by 90 pF on ac．

The 168 may be powered by line volt－ age or rechargeable NiCad batteries when the model 1688 rechargeable bat－ tery set is installed．

With this dmm，you can turn on a semiconductor junction to see if it is good；or measure resistance in－circuit without turning on associated semicon－ ductors．The 1.8 volts across the test prods，in the HIGH－OHMS mode，is enough to turn on most semiconductors． In the LOW－OHMS mode，a maximum of 180 mV is applied to the circuit under test so semiconductors are not turned on．

This dmm operates from 90－110，105－ $125,195-235$ or $210-250 \mathrm{~V}, 50.60 \mathrm{~Hz}$ ， 6 W ．It is $31 / 2 \times 91 / 4 \times 103 / 4$ in．，$[1 / 2 \mathrm{lbs}$ ． $\$ 299$ ，$\$ 359$ with rechargeable battery pack installed．

ONE－YEAR BATTERY LIFE from a stan－ dard 9 －volt transistor battery anc liquid－ crystal display are two novel fiza ares of Danameter model 2000，a prozuct of Dana Laboratories．

Voltage ranges（ac and dc）are 2，20， 200 and 1 kV with 1 mV resoluion．In－ put impedance is 10 megohms on dc and 2 megs shunted by 40 pF on ac． Accuracy is $\pm 0.5 \%$ of reading $+.05 \%$ of range on 2－volt dc range；$\pm: 075 \%$ of reading $+.05 \%$ of range on the emain－ ing dc ranges．

Direct current ranges are $23 \mathrm{~A}, 200$ mA and 2 A with $0.01 \mu \mathrm{~A}$ res olution． Resistances ranging from $20 C$ cinms to 200 megohms are covered in lous 100：1 ranges．Resolution is 0.1 uh 7 ．The Danameter 2000 is $\$ 195$.

R－E

KICK OUT THOSE＂TOUGH DOG＂TIME －${ }^{\circ}$ CONSUMING AM－FM STEREDS BEFORE THEY EAT UP ALL YOUR PROFITS．

WITH THE ONLY COMPLETE AM－FM STE：REO analyzer onthe market today．．．With all SIGNALS AT better than fCC Specs

all 12 signals that you Need to walk the TROUBLE OUT OF ANY AM，AM－FM，AUTO RA［IIO，OR THE BIGGEST HI FI IN THE BUSINESS．

takes the fear out of stereo servicing by ISOLATING PROBLEMS IN MINUTES WITH：

MONITORED BY DUMMY LOADS AND 2 D＇ARSONVAL NETERS FOR POWER OUTPUT AND TRUE SEPARATION TESTS．
SEE YOUR SENCORE FLPD DISTRIBUTOR FOR A 10 DAY FREE TAIAL．

Circle 26 on reader service card

[^2]SG165

Rew Prochrete

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

RECEIVER, model R36S features 30 watts per channel into 8 ohms, both channels driven from $20-20,000 \mathrm{~Hz}$ at less than 0.5% distortion. FM performance includes IHF sensitivity of $1.9 \mu \mathrm{~V}$, capture ratio of 2.5 dB and midband stereo separation of 35 dB minimum.
Operating features include channel selector, ganged bass, treble and volume controls, channel-balance control, switched loudness-

compensation, mono/stereo mode, tape monitor facilities, muting and high-frequency filter switches, speaker connections and switching for two sets of stereo speakers. Separate signal-strength and center-channel tuning meters are included. Rear panel features include choice of 300 -ohm antenna strip or 72 -ohm antenna jack, DIN jacks and multiple voltage selector for foreign operation, speaker fuses and extra accessory power outlets. Frequency response: 25-15,000 Hz. $51 / 2 \times 18 \times 13$ in.; 24 lbs.; $\$ 329.95$.-H. H. Scott, Inc., 111 Powdermill Road, Maynard, MA 01754.

Circle 31 on reader service card
OSCILLOSCOPE, mode/ 530A. Medium-band width, dual-trace portable scope features internal parallax-free $6 \times 10 \mathrm{~cm}$ CRT graticule, $1-\mathrm{mV}$ sensitivity on both vertical channels with a full $25-\mathrm{MHz}$ bandwidth, five display
modes and stable, high-speed gated trigger capable of locking any signal from dc to 40 MHz , including TV line and frame. Special operating requirement such as dc trigger or $\star 5$ magnification is obtained by pressing the appropriate button. Also incorporates internal delay lines and offers optional battery pack. \$1,150.00-Scopes Unlimited, Inc., 1928 South Anaheim Blvd., Anaheim, CA 92805 Circle 32 on reader senvice card
AMPLIFIERS, mode/s PA-2938 \& PA-2939. Both models help to boost low-power mobile or base station and give it increased talk power and greater operating range. Operation is automatic and self-protecting. Bal-
anced emitters are tested for all mismatched conditions. Extra heavy heatsinking is used to provide extended duty cycle in the course of everyday use.

Built-in low-pass filter attenuates harmonics in excess of FCC requirements. SWR pro-

tection has reset button to reactivate power amplifier after shutdown. Frequency range: $150 \mathrm{MHz-175} \mathrm{MHz}$. Power input: PA-2938, 10 watts; PA-2939, 25 watts. Power output: PA-2938, 80 watts; PA-2939, 80 watts.-Sonar Radio Corp., 73 Wortman Avenue, Brooklyn, NY 11207.

Circle 33 on reader service card
POWER SOURCE MONITOR, model VS-200 contains five regulated power supplies. Has dual $\pm 15 \mathrm{~V}, 110 \mathrm{~mA}$ supply for most common linear amplifier applications. Has dual polarity, tracking $\pm 200 \mathrm{~mA}$ power supply that can be controlled between 50 mV and 20 V . Also has $0-200 \mathrm{mV}, 10-\mathrm{mA}$ supply whose polarity can be reversed.
$31 / 2$ digit liquid-crystal meter is $0.5^{\prime \prime}$ tall; monitors the output of any power supply; can

be switched by front panel control to monitor the outputs of standard power supplies; can also be used to measure voltages produced by other devices; accuracy is 0.2%. Automatic decimal point placement; automatic short-circuit shutdown; unit doubles as digital voltmeter. $5 \times 15 \times 11 \mathrm{in} . ; \$ 395.00$.-Thinc, Technical Hardware Inc., P.O. Box 3609, Fullerton, CA 92634

Circle 34 on reader service card
OSCILLOSCOPE, mode/ PS940A. Mini-portable scope features computerized triggering. TTL logic circuit eliminates the need for front panel adjustment to achieve a stable trace display. DC trigger mode most often used in digital test efforts allows user to make vertical position adjustments without losing sync.

Twenty one sweep ranges, 20 MHz bandwidth, $10 \mathrm{mV} / \mathrm{div}$ sensitivity, built-in delay line for use in viewing pulse leading edges, full dual-trace switching capability, algebraic waveform as well as ac, low-frequency reject

and high-frequency reject trigger modes. Screen size is full 8×10 divisions with each division equal to $1 / 4^{\prime \prime}$. Battery recharging circuitry is included within chassis. Operates from battery, ac or dc powered; battery charge indicator. $31 / 2 \times 81 / 2 \times 12 \mathrm{in}$.; 9.5 lbs .; $\$ 1,095.00$. Vu-data Corp., 7170 Convoy Court, San Diego, CA 92111.

Circle 35 on reader senvice card
CB ANTENNA, model M-306 is designed for use on motorcycles, fiber-glass bodied vehicles, boats, snowmobiles and other vehicles that do not have enough metallic ground area to assure good operation of a standard CB antenna. Secret of the unit's performance is its half-wave-length electrical design with both base-and-whip-loading coils. Heavy-

duty spring above the base loading coil provides shock protection.

Entire antenna is designed for rellable operation under high vibration conditions. Has white fiber glass whip and streamlined chrome spring assembly. Supplied complete with hardware for a variety of installation requirements that include mounting on vertical or horizontal surfaces or on round bars up to $3 / 4^{\prime \prime}$ in diameter. $\$ 30.95$-complete with coax cable and connector.-Antenna Specialists Co., 12435 Euclid Avenue, Cleveland, OH 44106.

Circle 36 on reader service card
SOLDERING IRON, $D /$ Line. Heater and handle with two-conductor cord set and safety plug are double insulated; meet latest safety standard of OSHA and are UL listed. Modu-
lar in concept．Four rugged stainless steel heaters and three heat ranges provide flexi－ bility for virtually every soldering job．Easy－ to－use，lightweight and compact design．Han－

dle is molded of durable plastic with finger－ease cool drip．－Ungar，Div．of Eldon Industries，Inc．， 233 East Manville，Compton， CA 90220.

Circle 37 on reader service card
SPEAKER，Formula 1 is a two－way system that is designed as the main speaker in budget systems or as a second stereo pair． Frequency response is $35-17,500 \mathrm{~Hz}$ ；im－ pedance is 8 ohms．For use with low－power amplifiers or receivers，yet it can handle as much as 50 rms watts per channel．

Bass energy is boosted as woofer＇s back－ wave energy travels through Venturi－coupled

path that functions as acoustic transformer In that path，air motion velocity increases over broad band of bass frequencies．＂Bi－ conex＂horn／compression driver assembly is used to cover mid－range and treble fre－ quencies． $15 \times 107 / 8 \times 10 \mathrm{in}$ ．；$\$ 74.95$ each．－ BIC Venturi，British Industries Co．，Westbury， NY 11590.

Circle 38 on reader service card
4－CHANNEL RECEIVER，model CS70R offers choice of 4－channel systems－discrete or matrix－or 2－channel stereo；full－featured digital clock that can be pre－set to turn complete system on or off；power switch that is actually a key that can lock the system in the off position．

Tuner features：FET FM front end，i．f．

amplifier with an IC and three solid－state filters，IC FM multiplex demodulator，ultra－ sensitive AM tuner section．Preamplifier sec－

WRITE TODAY FOR FREE LITERATURE

3502010

RESEARCH AND MFG．CO．
CONSHOHOCKEN，PA．，U．s．A．

Circle 27 on reader service card

The New Electronics Book

Sophisticated Electronics For Fun
By Joe R．Urschel
A totally new step by step guide to the＂how to＂of modern electronics，with 190 illustrations in this big 8 1／2＂X 11＂book

Now，whether you＇re a novice or an expert you can benefit from this fuct filled， easy to read book．Plus how to use TTL logic，in a non－academic app oach to analog and digital electronics．

Special Bonus

Complete tried and proved plans to build • two electronic slot michines • electronic clock with chimes－juke box with no moving parts－compuse game．

Available in the Chicago area at Kroch＇s \＆Brentano＇s bookstores．

Order Today

KROCH＇S \＆BRENTANO＇S 29 S．Wabash Ave．，Chicago，L 50603
 Please send me
 \qquad copies of Sophisticated Electronics For Fun，$\$ 6.95$ ezet If not completely satisfied．I may return the book（s）within ten days for credit ar efund．

 REName \qquad

Address

City／State／Zip
\square Charge my K \＆B account \qquad Payment in amount of $\$$ \qquad nclosed
\square Charge my Master Charge or Bank Americard \qquad Expiration date handling charge Sory tax．Free

ABraw
 AUTOMATIC
 STAPLE GUNS CUT WIRE \& CABLE INSTALLATION COSTS

. without cutting into insulation!
SARFE Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

No. T-25-Fits wires up to
1/4" in diameter.
Same basic construction and fastens same wires as No . T-18.

Also used for RADIANT HEAT WIRE

Uses T-25 staples with $1 / 4^{\prime \prime}$ round crown in $9 / 32^{\prime \prime}$, $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$ and $9 / 16^{\prime \prime}$ leg lengths
$\mathrm{T}-18$ and $\mathrm{T}-25$ staples also available in Monel and with beige, brown and ivory finish at extra cost.

Arrow Automatic Staple Guns save 70% in time and effort on every type of wire or cable fastening job. Arrow staples are specially designed with divergent-pointed legs for easier driving and rosin-coated for greater holding power! All-steel construction and high-carbon hardened steel working parts are your assurance of maximum long-life service and trouble-free performance.

Ask your Electrical Supply Dealer or write for further details.

Ananm histener company inc
 Seddie Brook. New Jerscr 07663
 "Pioneers and Pacesetters
 For Almost A Half Century

tion has 11 controls that include separate bass, treble and loudness controls; inputs for tape, phono and aux.; accommodates FM wireless microphone; stereo and 4-channel headphone jacks. Amplifier section has bridged transformerless circuit, power output in 2 -channel mode $22+22$ watts rms (each channel driven) into 8 ohms at 1000 Hz ; in 4-channel mode 12×4 watts rms (each channel driven) into 8 ohms at 1000 Hz ; total harmonic distortion in 2 - and 4 channel modes is less than 1% at rated power; power bandwidth in all modes is 30 to $40,000 \mathrm{~Hz}$; frequency response is 40 to $20,000 \mathrm{~Hz}+3 \mathrm{~dB}-3 \mathrm{~dB} . \$ 370.00$. Yamaha, 6600 Orangethorpe Avenue, Buena Park, CA 90602

Circle 39 on reader service card
SERVICE AID, Omni-Spra, is a nozzle extension that sprays in a 360° circle as well as out the end-used for cleaning the backs

and sides of components as well as the fronts. New aid is being packed with all cans of the company's "Blue Shower." For free sample, send note to attention of Jean Main. —Tech Spray, P.O. Box 949, Amarillo, TX 79105.

Circle 40 on reader service card
LEAD BENDER, model $N-300$ eliminates measurement and trial and error bending of component leads. Matching pointers with eyelet holes in circuit boards by spining knurled wheel with thumb automatically spaces bends for insertion of component into board. Bends are formed by pressing

leads against sides of pointers with thumb and forefinger. All axial lead components are accommodated, e.g., resistors, capacitors, diodes, transistors, inductors, etc. up to $1 / 2$ in. diameter $\times 11 / 2 \mathrm{in}$. Iong with maximum distance between inside of bends of 1.725 in. $\$ 32.50$-complete with spare set of lead guides.- Harwil Co., 903 Colorado Avenue, Santa Monica, CA 90401.

Circle 41 on reader service card
TURNTABLE, model SR-212. Two-speed ($331 / 3,45 \mathrm{rpm}$) unit features a heaw beltdriven 12" aluminum alloy platter. Motor is a stable 4 -pole synchronous design that maintains constant speed regardless of line voltage variations. Cueing device is damped going up as well as down. No chance for tone-arm snap-up and loss of correct position when just a pause in play is desired.

All you have to do is move tone-arm over the record groove and nudge cueing lever. Arm floats down over the groove and lifts up again when the side is completed; arm is an S-shaped design with anti-skate counter

Rlos ELECTRONICSL

SPECIAL - THIS MONTH ONLY:
LM1800 Phase-locked loop stereo demülti plexers. No coils!!
Regularly $\mathbf{\$ 2 . 5 0}$; this month only, $\$ 2.00$ each
008A MICROCOMPUTER KIT
8008 CPU, 1024×8 memory; memory is expandable. Kit includes manual with schematic, programming instructions and suggestions; all ICs and parts supplied except cabinet, fuses and hardware. Includes p.c. boards. $\$ 375.00$ MANUAL ONLY, \$25.00

008A-K ASCII KEYBOARD INPUT KIT

Kit includes keys, p.c. board, ICs, power supply. schematic and instructions. This kit is intended to interface ONLY with the RGS Electronics 008A Microcomputer $\$ 50.00$

LAB TYPE POWE R SUPPLY

PS 25-1 Zero to 25 volt 1 amp lab type power supply with adjustable current limiting. has remote sensing and remote programming for voltage and current. Instructions included. All parts supplied except chassis and meter(s). Kit of parts with schematic, $\quad \$ 14.95$ P.C. Boards available for PS 25-1, \#007, \$3.00 TRANSISTORS
NPN General purpose TO-92 \$.08:\$5.95/100 PNP General purpose TO-92 $\$.08 ; \$ 5.95 / 100$ Other transistors and JFETS available at our usual low prices; all are tested, good units. Specs available in our flyer.
RGS ELECTRONICS, 3650 Charles St. Suite K Santa Clara, CA 95050
(408) 247-0158

We se// many /Cs and components not listed in this ad, included most of the 7400 series; send a stamp for our free flyer.
TERMS OF SALE: All orders prepaid; we pay postage on al/ U.S. orders. Handling charge of $\$ 1.00$ on U.S. orders under $\$ 10.00$, foreign orders under \$25.00. California residents please include sales tax. Please include name, address and zip code on all orders and flyer requests. DISCOUNTS: 10\% OFF ORDERS OVER \$ 25 20\% OFF ORDERS OVER $\$ 250$.

Circle 30 on reader service card

SCELBI COMPUTER CONSULTING, INC.
 Announces The Totally New and The Very First MIII-COMPUTER
 Designed For The

ELECTRONIC/COMPUTER HOBBYIST!

This is a true digital mini-computer with computing power that will astound you! At a LOW, LOW price you may find hard to believe. This versatile electronic wonder has been designed to delight the very heart of every person who has dreamed of owning their very own computer. It is all solid state and conservatively designed to provide years of lasting pleasure. It is a fully programmable machine.
A complete line of peripheral units are available to use with the SCELBI-8H. Such as an interface that turns a low cost oscilloscope into a complete alpha-numeric display system, low cost keyboard and TTY interfaces, and an interface that turns a low cost audio tape cassette unit into a "Mag-Tape" storage system.
Plus - a large selection of software! Programs such as Editors, Assemblers, Calculator packages, I/0 routines for ASCII and Baudot machines and SCELBI interfaces, Data manipulating routines, Games, and much more
And, the skill and support of an organization staffed with professionals dedicated to bringing you the most computer power for your money. Professionals who have been delivering SCELBI 8 H systems for more than a year!
Fully tested card sets for the SCELBI-8H start as low as $\$ 440.00$! Complete computers (card set plus chassis) as low as $\$ 580.00$. And, for the real "do it yourself" buffs, we now offer "unpop ulated" p.c. card sets starting as low as $\$ 135.00$ (Domestic prices.)

Literature available by request:
SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road
Milford, CT. 06460
Phone (203) 874-1573
Circle 61 on reader service card
balance in addition to conventional stylus force counter balance weight. Comes complete with walnut base. Connection from arm

to amplifier is low-capacitance lead that is suitable for CD-4 applications. \$149.95.Sansui Electronics Corp., 55-11 Queens Blvd., Woodside, NY 11377.

Circle 42 on reader service card
DIGITAL MULTIMETER, model 2180. $31 / 2$ digit, bipolar instrument has all five standard multimeter functions plus five decibel measurement ranges extending from -60 dB to +56 dB . Basic accuracy of 0.1% and resolution of $100 \mu \mathrm{~V}$; operates from either ac line or internal rechargeable batteries.

Functions are pushbutton selected and include ac volts, dc volts, ac current, dc current, resistance and decibels. Its 31 measuring ranges are selected by rotary switch with additional battery check position that allows internal battery conditions to be monitored. Automatic integral battery charging
circuit will maintain batteries at full charge as long as instrument is connected to ac line. "HT Converter" A-D conversion technique,

coupled with LSI, has enabled reduction of components. Circuit boards, IC's and displays are plug-in. \$395.00.-United Systems Corp., 918 Woodley Road, Dayton, OH 45403. Circle 43 on reader service card

HOME ALARM SETS, Snap On. Every component is pre-wired with exclusive Snap On

connectors. There are no wires to cut, strip, solder or splice. Power source is a standard 6 - or 12 -voli battery.

Each set includes a solid-state control center that is always alert to fire danger, even when the burglary system is turned off; an electronic siren with separate signals for fire or burglary; a key switch that permits the system to be turned on or off from out-
side the home; intrusion detectors or doors or windows; fire detectors; 20-foct ixtension cords; three-way connectors; an easy-tofollow installation manual; identifying warning decals. \$69.95; expanded del 1×3 version $\$ 99.50$.-Master Lock Co., 2600 Nirth 32nd Street, Milwaukee, WI 53210.

Circle 44 on reader service $\therefore d$
NON-CONDUCTING METAL SHEET for printed circuitry. To make a sinf e circuit or a complex multi-layer breact:ard, you draw or scribe your design diresty on the surface of the material which instently ren-

ders a working circuit. Pressure s all that is necessary. For mass production a letter press can be used. Without using a new board, circuits can be erased for n king new designs. Since the metal sheet is non-conducting, components and wiring ca* be spotsoldered at random, indeperdent from adjacent areas of the board. For IIs: in solid-
TIGER "B" - BASIC

Now available, our latest version of the amplifier that started it all; the faithful old "Universal Tiger". We have put him in a fancy new chassis and added our famous complementary differential input circuit, but this is still the rugged, low distortion, economical amplifier that thousands of you out there love so well. With a power output of 75 Watt into an 8.0 Ohm load, or 90 Watt into 4.0 Ohms the "Tiger $B^{\prime \prime}$ is the ideal BASIC amplifier for all types of applications; from HiFi systems to public address work, to instrument amplifiers; you name it. With its tremendous frequency response, -1.0 dB at 1.0 Hz and 100 KHz and super low distortion of $.05 \%$ IM at rated output, Tiger "B" is ideal for almost any application using an audio amplifier.
Nothing but the best components and first quality fibreglass circuit boards are used in this kit. The chassis is bronze anodized and the perforated metal cover is standard. For those who insist on "guilding the lilly" we have an accessory kit to add an output meter, input level control, overheat indicator lamp, front panel power switch, etc.
Circle our reader service number for your free copy of our latest catalog.

AMAZING OFFER
RADIO \& TV SERVICE DATA Your best, complete source for all needed TV and RADIO diaMost amazing vaiues. Most giant volumes only $\$ 4$, some at $\$ 2$. Cover all important makes, models of all periods. Use this entire ad as your
ne-risk order form.

NO-RISK ORDER COUPON

TELEVISION SERVICE MANUALS

Suprome TV manuals are best for faster, easier TV repairs. Accurate factory data at bargain prices. Complete clrcuits, needed alignment facts, printed circuit views, waveforns, voltages, productiom
changes, and double-page schematics. Mostly $\$ 4$ each, some less, for a large annual manual. Check volumes wanted.
$\square 1970$ COLOR TV Manual, \$4 $\square 1970$ B-W TV, $\$ 7$ 1969 COLOR TV, \$4 $\square 1969$ B-W TV, $\$ 4$ $1968 \mathrm{TV}, \$ 4 \quad \square 1967 \mathrm{TV}, \$ 4 \mathrm{C},{ }^{2} 1966 \mathrm{TV}$, \$4 Additional $1965 \mathrm{TV}, \$ 4$
$1964 \mathrm{TV}, \$ 4 \quad \square 1963 \mathrm{TV}, \$ 4$ Early $1965 \mathrm{TV}, \$ 4$
$1962 \mathrm{TV}, \$ 3$ $1964 \mathrm{TV}, \$ 4$ TV Manual, $1963 \mathrm{TV}, \$ 4$ Early $1959 \mathrm{TV}, \$ 4$ 1958 TV Manual, $\$ 3$ a Additional 1957 TV, $\$ 2$ $1955 \mathrm{TV}, \$ 2 \quad \square 1954 \mathrm{TV}, \$ 3 \quad \square 1951 \mathrm{TV}, \$ 3$

RADIO DIAGRAM MANUALS
These low-priced radio manuals simplify all re-
palrs. Cover everything you may need from recent radios to oldtimers; all types of radios, stereo, com binations, transistor portables, FM' AM auto sets. Large schematics, boards, voltage data, dial stringing, hints. Volumes are big. $81 / 2^{\prime \prime} \mathbf{x}^{2 \prime \prime}$ ". about 190 pages, each

\square 1967-1969 Combined Volume \square 1966, \square 1965, | \square 1967-1969 Combined Volume \square 1966, \square 1965, |
| :--- |
| \square 1964, \square 1963, \square 1962, $\square 1961, ~$ |
| 1960 , | 1959, \square 1958, \square 1956, \square 1955, $\square 1960$, 1953, \square 1952, \square 1951, $\square 1950, \square 1948$, $\square 1946, \square 1942, \square 1941, \square 1940$, EACH, $\$ 4$ -. 1926-1938 Antique Radios, 240 pages, $\$ 7$

- 1965 Auto Radios, $\$ 2 \square$ Television Course, $\$ 3$

SUPREME PUBLICATIONS

1760 Balsam Road, Highland Park, ILL. 60035 Rush todsy TV and Radio manuals checked in noplus ol for postage and handing Satisfaction guaranteed.

Narne:
Address
City

FOR THE MAN IN ELECTRONICS

SEE $\begin{gathered}\text { TRIGGER'S } \\ \text { GREAT SELECTIONS }\end{gathered}$

Send for this reliable buying guide to carefully selected: Amateur Gear - Stereo HiFi - Electronic Kits - CB Radio - Tape Recording Electronic Parts - Antennas - Tubes . Transistors. Tools - Books - Test Gear Count on TRIGGER for the best in electronics. Write for this Free Catalog foday!

A MONEY-SAVER
SEND FOR IT TODAY!
FREE
TRIGGER Electronics, Dept. 13-NO Catalog
| 7361 North Ave., River Forest, III. 60305
| \square Send FREE TRIGGER Catalog
1 Nam

1

1 City__Stote__Z_

Now...the most enjoyable do-it-yourself project of your lite-a Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skill (or lack of it) how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.

Five superb models with kit prices from $\$ 575$ to around $\$ 2,300$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished - lifelike big auditorium reverberation, automatic rhythm, presets, chimes, and more.
Join the thousands of Schober Organ builderowners who live in every state of the Union. Often starting without technical or music skills. they have the time of their lives - first assem bling, then learning to play the modern King of Instruments through our superlative instructions and playing courses.
Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

The Soholez Organ Corp., Dept. RE-132 43 West 61st Street, New York, N. Y. 10023
\square Please send me Schober Organ Catalog \square Enclosed please find $\$ 1.00$ for 12 -inch L.P record of Schober Organ music.
NAME
ADDRESS
CITY \qquad STATE \qquad Z1P
state printed circuitry, breadboarding, terminal blocks, chassis, etc.-Melal Circuit Systems Corp., P.O. Drawer 2226, Houston, TX 77001

Circle 45 on reader senice card
WIRE STRIPPER, model EWS-10K. Cuts and strips 5000 wires per hour with 6 in. wire length. Strip length from 0-1.5 inches in 0.1 inch steps; wire length from 2.5-99.9 inches in 0.1 inch steps. Wire feeds via two stepping motors; wire length and strip length controlled by gating proper number of motor

steps. Same strip block used for all lengths. All solid-state control; no air required. Preset number stops operation automatically after selected number of cycles. Non-nicking blades are made of heat treated tool steel. Complete panel functions; three operating speeds-slow, medium, fast. For AWG24-30. $18 \times 20 \times 20$ in.; 90 Ibs.-OK Machine and Tool Corp., 3455 Conner Street, Bronx, NY 10475

Circle 46 on reader service card
EXACT REPLACEMENT ZENITH SOCKETS, Kit No. 39 contains a general purpose assortment of four sockets, none of which has a substitute. In addition to this kit, Oneida

also offers zenith sockets S-74-C, an exact $9-$ pin replacement and S-75-C, an exact 12pin replacement. Combination of the kit assortment plus the other two sockets provides complete Zenith coverage.-Oneida, Box 558, Meadville, PA 16335.

R-E
Circle 47 on reader senvice card
American Airlines installs TV
on all its luxury planes
Special television systems that provide recorded TV shows or full-length movies have been installed on all of American's DC-10 Luxury Liners. Each DC-10 is equipped with a color videocassette player/recorder in the first class section and a 25 -inch RCA XL-100 television set in the cabin.

R-E

new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

ELECTRONIC COMPONENTS CATALOG. 35page catalog contains 350 items carrying the Ultratec label. Among them are mike, tape and phono accessories, miscellaneous electronic accessories, audio cables and adapters, hi-fi and hobby electronics, tools and service aids, panel lamps, fuses and battery holders, wires and cables and electronic construction components. An alpha/numerical index appears at the end of the catalog. -Workman Electronic Products, Inc., Box 3828, Sarasota, FL 33578.

Circle 48 on reader service card
J-JACKS CATALOG. 12-page brochure explains the company's J-Jacks system for educational and medical TV systems; permits distribution of uhf, vhf, FM, closed-circuit video and audio signals simultaneously throughout the school or hospital; also has 2-way signal carrying capability. Covers design and installation, from basic distribution systems to sophisticated automatic 2-way systems. Architect specifications are also in-cluded-Jerrold Electronics Corp., 401 Walnut Street, Philadelphia, PA 19105.

Circle 49 on reader service card
KIT CATALOG. 56 -page catalog lists over 175 different kits ranging in price from a few dollars to a few hundred dollars. Product areas covered are amplifiers and preamplifiers, test instruments, power supplies, radio control apparatus, auto accessories, ham and CB accessories, musical instrument accessories, FM transmitters and receivers. Many illustrations.-Audiex Electronics, P.O. Box 156, Station " S ", Toronto, Ontario, Canada M5M 4L7.

Circle 50 on reader service card
BUSINESS FORMS CATALOG. 32-page catalog for television and appliance firms contains multipart service order forms, repair tags, sales forms and billing forms. These forms are in duplicate and triplicate sets, consecutively numbered and imprinted with your firm's name and address. Also featured are business cards, pressure sensitive labels, carbonless register forms, bookkeeping systems and many other business forms. Illus trations in color.-New England Business Service, Inc., P.O. Box 500, Townsend, MA 01469.

Circle 51 on reader service card

CHART, Increase Your Viewing Pleasure. Complete buyers' and sellers' guide to RCA Permacolor outdoor antennas, uhf-vhf/FM whf/FM, uhf-only, FM-only; rotators (including Selecta-channel 10W606); three different types of antenna mounting kits and MiniState antenna system with hand-held rotator remote control unit. 11×44 in.; shows inside
components of Mini-State antenna and cabinet design of rotators; also lists components of antenna mounting kits that are available.RCA Parts and Accessories, P.O. Box 100, Deptford, NJ 08096.

Circle 52 on reader service card
HI-FI LOUDSPEAKER SYSTEMS CATALOG. 24-page illustrated brochure describes floor standing loudspeaker systems, compact loudspeaker systems, Stonehenge I and III loudspeaker systems as well as components and utility systems. Price list is inserted in bro-chure.-Altec Sound Products Division, 1515 South Manchester, Anaheim, CA 92803.

Circle 53 on reader service card
1974-75 VHF-UHF-FM TUNER REPLACEMENT GUIDE AND PARTS CATALOG NO. 4. 95 -page catalog contains exact tuner re-
placements, widely used tuner parti, chemicals and tools. Indexes for blow-ups and uhf tuners. Covers Standard Kolkman, Oak, Sarkes Tarzian, RCA, Zenith, Phichi, Motorola, G.I., miscellaneous, domestic and foreign made tuners. Includes antenna natching coils and antenna coil replacemerit guide. $\$ 2.00$; refundable on first order for joods or services.-PTS Electronics, Inc, P'O. Box 272, 5322 Hwy. 37 S., Bloomington, IN 47401.

STEREO \& 4-CHANNEL CATALQG 32-page catalog contains 8 -track sterea tecording decks, AM/FM stereo systems, turntables, mini changers, TV tuner and electrmic control cleaner, speaker systems, pecording tapes, hi-fi shelving unit, tape recorfed control center, headphones, audio gadjets and many illustrations.-Etco Electron cs, Box 741, Montreal, Quebec, Canada. FOR TUBE AND SOLID STATE SERVICING

- 30 KV CAPACITY
- METAL CABINET - SPEAKER BUILT IN

COSMOS PROJECTS
(continued from page 60)
voltage swing of $\mathbf{C 1}$ is clamped to the limits of the power supply voltage by the input protection diodes of the \cos / mos gates, the operating frequency is influenced by variations in the supply voltage: Typically, a 40% variation in supply vol+5 TO 15 V

FIG. 30-BUFFERED-OUTPUT 1-KHZ astable

-D1 AND D2 = LOW-LEAKAGE GENERAL

*D1 AND D2 = LOW-LEAKAGE GENERAL-
FIG. 31-a-VARIABLE MARK/SPACE RATIO VIBRATOR with independently variable on
tage causes a 5% variation in frequency. Another disadvantage is that the frequency of operation is influenced by the transition voltage values of the CD4001 gates and in practice, the actual frequency of operation may vary by 10% over the production spread of the CD4001 when using identical R1 and Cl values.
(continued on page 90)

multivibrator.

PURPOSE SILICON DIODES

PURPOSE SILICON DIODES
astable multivibrator. b-ASTABLE MULTIand off times.

LEADER Video Color Signal Source

Who else can give you 5-Step Staircase, Window, Convergence and White

An exciting first with digital IC circultry, olfering 5-step staircase, window, convergence, white purity adj'm'is, and scope triggering. Has complete rainbow spectrum, 10 gated rainbow patterns, plus 3 gated bar patterns. With video IF, RF and composite video outputs. Pertect for testing and maintaining CATV, MATV, CCTV, VTR \& NTSC receivers Compact, lightweight.

Purity Adjustments

> for only
> $\$ 299_{\text {MODEL LCG-395 }}^{95} \ldots$

Circle 69 on reader service card

It's one thing to make the most. And another to make the best. We do both.

We make 2 out of every 3 automatic turntables in the world. That's mare than all the other makes put together. So BSR is big, all right. But we also make what we sincerely believe is the best automatic turntable in the world. The BSR 810QX for sophisticated systems.

Don't take our word for it. Take it right from High Fidelity magazine's technical reviewer: "Taking it all together - performance, features, styling - the BSR 8100X moves into ranking place among the best automatics we know of.'

The 810QX at fine audio retailers. Ask for a demonstration or write for free literature.

McDONALD
BSR (USA) Ltd
Blavelt NY 10913

FRIE
 CATALOG of over 1500 unusual tools

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

Circle 71 on reader service card

FREE ALARM SYSTEM CATALOG

Sirens

Full line of professional burgiar and fire alarm systems and supplies. 96 pages, 450 items. Off-the shelf delivery.
mountain west alarm 4215 n. 16th st. phoenix, az. 85016 (602) 263-8831

COSMOS PROJECTS

(continued on page 89)
Both of these disadavantages can be largely overcome by simply wiring a high value resistor in series with the input of gate A, as shown in Fig. 29, thus enabling the voltage swing of Cl to exceed the supply voltage. Limiting resistor R2 must have a value at least double that of timing resistor Rl .

In practice, the operating frequency of this circuit is subject to a change of less than 5% over the production spread of transfer voltages, and to a frequency shift of less than 2% with a 40% change in supply voltage. Another advantage conferred by the use of R2 in the Fig. 29 circuit is that of excellent thermal stability: The operating frequency typically varies by only 1% over the temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Minor disadvantages of both the Fig. 26 and Fig. 29 circuits are that the leading and trailing edges of the output waveforms sometimes contain a certain amount of sag and 'mush', and the operating frequency is influenced by variations in the output loading conditions. Both of these disadvantages can be overcome by interposing an inverting buffer stage between the output of the astable multivibrator and the input of the external loading circuit, as shown in Fig. 30.

A final disadvantage of the Fig. 26 circuit, and to a lesser degree of the Fig. 29 circuit, is that the symmetry or mark/ space ratio of the output waveform depends on the transition voltage value of the individual CD4001 that is used. An IC with a transition voltage value of 35% gives a mark/space ratio of approximately $35 / 65$, and an IC with a value of 60% gives a mark/space ratio of approximately $60 / 40$. A true square wave (50/50) output is available only if the IC has a transition voltage value of exactly 50%.

The mark/space ratio of the output waveform of the astable circuit can be made variable by using steering diodes to select alternative charge and recharge resistance paths for the time-constant network, as shown in Figs. 31-a and 31-b.

In the Fig. 31-a circuit, the capacitor charges via D1 and the low half of the resistance chain in one half cycle, and via D2 and the top half of the resistance chain in the other half cycle. The mark/space ratio can be varied over the range $1 / 11$ to $11 / 1$ via $R 2$, and the circuit operates at a frequency of roughly 600 Hz .

The Fig. 31-b circuit has independently variable ON and OFF times. In one half cycle, the capacitor charges via D1-R1 and R3, and in the other half cycle, it charges via D2-R2 and R4. The period of each half cycle is variable over the approximate range $8 \mu \mathrm{~s}$ to $800 \mu \mathrm{~s}$ using the component values shown.

In this part of the series we have looked at practical ways of using the CD4001 in monostable and astable multivibrator applications. In the coming part of the series we shall go on to look at sixteen ways of using the CD4001 in lamp flasher, time delay, oscillator, and alarm applications.

WHAT'S AN "EBM"??!
OveI 1,000 inustrutums and Tables, ney'-dersinis

\qquad FACII ITIF: . . .HAST GOLDERENC . . , MONSTRUCTTON
 RESISTORC, PGTFNTIOMETERS A RHFOSTAT, , CAPAC-

 GATICN: , 'ACITTS.
\qquad

ORDER YOURS TODAY!

Cheek, Noney	Modet, BANMERICAFD at msterchast [Milete as catt wéth Accounct ©]
STtul aver	
$\$ 17 \underline{95}$	TECHNICAL DOCUMENTATION $\text { BOX } 340$
Postoplid In U.S.A.	CENTREVILLE, VA 22020 N4s-63q-1534

MP Series．Two models， $650^{\circ} \mathrm{F}$ or 750° F output，designed especially for today＇s printed circuit electronics． Famous closed loop control protects sensitive components from heat dam－ age．Comfortable pencil－grip iron with non－burnable cord．Power unit oper－ ates from line－voltage with step－down transformer．ON／OFF switch and red indicator light．＂Non－sinking＂tool stand．Tip－cleaning sponge receptacle． Variety of available tips multiply use－ fulness of this versatile station．
Ask your local distributor or write ．．．．

Weller－Xcelite
 Electronics Division

 The Cooper GroupP．O．BOX 728 ，
APEX，NORTH CAROLINA 27502
Circle 75 on reader service card

COMPUTER TERMINAL

（continued from page 44）
key sends a pulse to the 2－bit page counter which increases its count by 1 and advances the page controls 1 step．

In auto，the page will automatically change every time a character is en－ tered into the last position in a page． The instant after the page change，the new page＇s home position is at the cursor position．The black＂ P ＂key can still be used to change pages in the aUto mode．

In the auto stop mode，the opera－ tion is identical except that the auto－ matic page change can be stopped on any page desired by wiring from the page switch to one of four points．This gives the operator the advantage of be－ ing able to receive data into memory in the automatic mode and retain it， say，in the first 3 pages，and work on the 4 th page without writing over it， and not having to change any switches．

In either automatic mode，pressing the clear key（black＂C＂）will have the same effect as entering data into memory in the last position．This re－ sults in a page change every time you clear a page in automatic．This gives the operator the advantage of clearing all 4 pages with 4 key strokes of the clear key．

Power supply

The power supply consists of two paralleled power transformers（for added current and packaging require－ ments），a +250 volt unregulated sup－ ply，two +5 volt regulated supplies， a -10 volt an -12 volt Zener regu－ lated supply．

The +250 volt supply runs the self scan plasma display．One of the +5 volt supplies runs all logic on the main board，and the other runs the key－ board，modem／coupler board，and add on memory board．The -10 volt sup－ ply powers only the memory，while the -12 volt supply is connected to the UART and to the modem／coupler board to power the op－amp and XR210 demodulator．

Tape recorder memory

Using the tape record feature to record and play tapes from the CT－ 256，a medium quality（cost greater than $\$ 50$ ）or better cassette recorder is advisable along with a good quality recording tape．Of course a good reel to reel machine would insure better data integrity but good results are ob－ tainable from a cassette machine．

Making a recording is as simple as connecting a miniature phone plug to the jack on the back of the CT－256 and the other end to the＂mic．＂input on your tape recorder．Once you have
（continued on page 106）

FOR DOUBLE DUTY ON DJIENS OF POPULAR SCREWS ANL NUTS

Three new assortments have joined Xcelite＇s family of＂Compact Cor verti－ bles．＂Each an Xcelite＂original＂No－ where will you find such a vinurey of sizes and types in a midget set，for driving slotted，Phillips，Allen． $\mathrm{Cm} / \mathrm{lox}$（ ${ }^{(8)}$ hex，and clutch head screws．And hex nuts．

All of professional quality，precision made of finest materials．All loing ＂double duty＂with torque am sifier handle that slips over color－soded midget tools for longer reach zeater driving power．Each easily ident fiable on the bench or in the service hit thru Xcelite＇s exclusive，optically clear，plastic ＂show case＂that closes secure I with positive snap－lock

NEW！

PS130－3 slot tip， 2 Phillifs sorew－ drivers， 5 nutdrivers
PS140－4 slot tip， 3 Phillips screw－ drivers， 3 nutdrivers
PS6－ 3 slot tip． 3 Phillips screwnivers PLUS－PS88，PS120．PS7，PS89 PS44， and PS－TR－1 with varying selec tions of screwdrivers and nutdrivers．

Ask your local distributor or write ．．．

> Weller－Xcelite Electronics Division The Cooper Group
ORCHARD PARK，N Y 14127 The Heathkit Digital Color TV is for two kinds of people

... those who understand electronics, and those who don't

People who understand electronics will appreciate the GR-2000's advanced digital design, incorporating on-screen channel readout and optional clock. Digital logic circuitry programs up to 16 stations in any sequence. Then just press a button-you'll never have to switch through a "dead" channel again. And our exclusive VHF/UHF varactor tuner eliminates clunking contacts that corrode and noisy motors that break down.
The GR-2000 also has the industry's first fixed-filter IF amplifier. There's no need for instrument
IF alignment ever, so
the picture stays bright
and clear year after year. And even in urban areas where stations are packed closely
 together, there's virtually no adjacent channel interference. The 100% solid-state chassis uses 19 integrated circuitsmore than any other TV around. You'll get superior pertormance and reliability no conventional set can match. A built-in dot generator and test meter make it easy to keep the GR-2000 in peak condition without expensive service calls. The slide-out service drawer and hinged, swing-out chassis
 CRT, the tuner and IF strip, and the video amplifier provide a picture equal to that of many studio monitors..."
Everyone likes the on-screen readout that puts the channel number into the picture whenever you want it. When you change channels or touch the recall button, the big, bright digits reappear. Add the optional clock module and you'll see the time as well as the channel.
The optional wireless remote control makes the GR-2000 even more enjoyable. Change channels, adjust the volume, set tint and color intensity and turn the set on or off from across the room. And, a touch of the Volume bar automatically returns the digital readout to the screen momentarily. It's an amazing handful of convenience.
Even if you don't have a lot of kitbuilding experience, you'll enjoy the GR-2000. Illustrated step-by-step in-
structions, prefabricated wiring harnesses, transistor and IC sockets and modular circuit boards greatly simplify assembly.
See the TV the experts are talking about. Popular Electronics summed it all up: "In our view, the color TV of the future is here - and Heath's GR2000 is it!"
GR-2000-the TV everyone can appreciate.
Mail order price for chassis and tube, $\$ 669.95$. Remote control, $\$ 89.95$, mail order.
Cabinets start at \$154.95, mail order. (Retail prices slightly higher.)

Christmas gift for

 your listGive your scientist，engineer or stu－ dent a gift he＇ll use all year long． Finger－sized keys and 8 bright $1 / 2^{\prime \prime}$ dig－ its make it easier to use than pocket calculators．Cumulative memory and register exchanges virtually eliminate scratchpad work．Performs arithmetic plus trig and arc trig in degrees or radians，common and natural logs，

Desktop

 Electronic Sliderule Solves Your Gift－Giving Problemspowers of e ， square roots， inverses，pi and exponential functions．
Kit IC－2100， 4 lbs．，
mailable ．119．95＊

Unique New Heathkit AM／FM Digital Clock Radio

Our outstanding clock radio makes even sleepy Santas happy．

The electronic clock with snooze alarm features a gentle＂beep＂with adjustable volume．Or wake to the component－quality AM／FM radio． Standby batteries（not included）keep the clock on time during power inter－ ruptions．Kit GR－1075， 10 lbs．，mail－ able ．．．．．．．．．．．．．．．．．．．．129．95＊

Learning＇s Fun With Our New

 Heathkit＂Electronics Workshop＂The JK－18A teaches kids electronics the easy learn－by－doing way． 35 excit－ ing projects include light meter，sound meter，transistor radios．For safety， it＇s battery powered and requires no soldering． （Batteries not included）Kit JK－18A， 10 lbs．， mailable ．．34．95＊

New Heathkit Aircraft Strobe

A bright idea for the pilot on your list －or for anyone who needs an emerg－ ency marine or marker light．It meets FAR 23.1401 and assembles easily in just one evening．For 12 VDC neg．ground． With clear lens， optional red and red／clear lenses available． Kit OL－1155， 3 lbs．， mailable ．．．．54．95＊
年

New Heathkit Electronic Clock／Timer for Car， Boat or Plane

an electronic clock and a 20－houl rally timer，both with quartz crystal ascur－ acy．Bright $1 / 2^{\prime \prime}$－tall digits dim auloma－ tically at night． 12 VDC，mounts on or under dash．Kit GC－1093， 2 lbs．．mail－ able

62．95＊

Two Heathkit Electronic Clocks with Standby Power

Two beautiful gifts－the GC－1092A is a clock with a snooze alarm；the GC－ 1092D reads the time in 6 digits，the month and date in 4 digits．Both have standby power to keep the clock on time without the display even caring temporary power interruptions．（Bat－ teries not included．）Kit GC－109：A or D， 5 lbs．，mailable ．．．．．each 8：2．95＊

Heathkit Exhaust Analyzer Checks Your Car＇s Tune Up

Make everyone＇s Christmas white and cleaner－be sure your tune up is help－ ing clean up the environment．Big $41 / 2^{\prime \prime}$

meter reads relative combustion efficiency， ain－fuel ratic and percer tage carbon monoxide． Kit Cl－1080， 6 lbs．，mailable ．．．51．95＊

- Dual-trace with true X-Y capability
- $1 \mathrm{mV} / \mathrm{cm}$ vertical sensitivity over the full bandwidth
- Post-deflection accelerated CRT for bright trace, fast writing
- Vertical amplifier delay lines for pulse analysis capability
- Digitally controlled triggering for exceptional stability
- Typically triggers up to 45 MHz -guaranteed to 30 MHz

It offers a lot more than just a low price

The Heathkit $10-4510$ is your best 'scope buy for two good reasons-it does more and it costs less.
Time base sweep up to $100 \mathrm{nsec} / \mathrm{cm}$. There's always a reference baseline, even when there's no trigger signal. The time base can be precisely triggered at any point along the positive or negative slope of the trigger signal. In automatic mode, it triggers at the zero crossing point.
Modes of display. Either channel can be displayed as a function of time or both can be displayed together. In $X-Y$ operation, channel 1 provides horizontal deflection and channel 2
provides vertical deflection. There are 22 calibrated time bases from $0.2 \mathrm{sec} /$ cm to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. The sweep speed is continuously variable between switch positions. Any speed can be expanded five times by pulling out the control knob.
For easy calibration, a 1 volt peak-topeak square wave is available on the front panel. The regulated supply operates from 100-280-volt AC power. Kit IO-4510, 34 lbs., mailable 549.95*
Assembled SO-4510, factory-wired \& calibrated version of the $10-4510,34$ lbs., mailable
.750.00*

projects-timed for

Coming in December...
 A new
 generation of Heathkit ham radio equipment

New Heathkit SB-104 transceiver

Years ahead in design \& features - the SB-104 is a complete rethinking of what a CW/SSB transceiver should be. It utilizes the latest digital \& solid-state technologies. The " 104 " is completely solid-state from the front end to the RF output.
Totally broadbanded. You can switch from 3 to 30 MHz without preselector, load or tune controls.
True digital readout with 6 bright digits to indicate the frequency with accuracy to 100 Hz .
Mobile-ready. The SB-104 operates from 12 VDC, so it's ready to go mobile when you are. Optional features include a plug-in digital noise blanker and 400 Hz crystal filter for CW.
Just about the only things that aren't totally new about the "'104" are the quality and easy assem bly that have made Heath famous. Kit SB-104 31 Ibs., mailable 669.95* Kit SBA-104-3, 400 Hz CW crystal filter for SB 104, 1 lb., mailable 34.95 Kit SBA-104-1, digital noise blanker for SB-104, 1 lb., mailable 24.95* Kit SBA-104-2, mobile mount, 6 lbs., maılable34.95*

New Heathkit SB-230 1 kW conduction-cooled linear

High-power match for the SB-104. Lowest cost conduction cooled linear on the market. 1200 watts PEP and 1000 watts CW from less than 100 watts input. It's also rated at 400 watts input for slow-scan TV and RTTY. And absolutely silent - no blowers, no fans.
Full metering of relative power, plate current, grid current and plate high voltage. Safety features include microswitch interlocks for top and bottom shells, thermal shutdown, fused cathode, on/off switch with circuit breaker for power transformer.
On the air in $\mathbf{1 5}$ to $\mathbf{2 0}$ hours. Fast, easy assembly, then check it out with an ohmmeter - no alignment necessary. Kit SB-230, 40 lbs., mailable .

New Heathkit SB-614
 station monitor scope

How clean is your signal? The bright $11 / 2 \times 2^{\prime \prime}$ screen helps you keep your rig in peak condition. Reveals a wide variety of operating problems - nonlinearity, insufficient or excessive drive, carrier or sideband suppression problems, regeneration and key clicks. Monitors AM, SSB and CW signals up to 1 kW from 80 to 6 meters. Kit SB-614, 17 lbs., mailable.
139.95*

New Heathkit 5-Function SB-634 station console

Five accessories in one - a 24 -h u 6-digit electronic clock, a ten-minute digital D timer with visual and/or audible alarms, FiF wattmeter, SWR bridge, hybrid phone patch w th manual and VOX controls. Kit SB-634, 1.4 It 5., mailable
179.95*

New Heathkit SB-644 remale VFO

Designed exclusive for SB-104, it provides the ultimate in multi-mode operation with 1wo crystal sockets for fixed frequencies. Ne riodifications - just plug the VFO into the "104 and go - VFO frequency even reads out or tie 104's digital display. Kit SB-644, 10 lbs.,
mailable
119.95*

New Heathkit Fixed station AC power supply

Powers the SB-104 from 120 or 240 t AC. Sophisticated regulation assures almost no change in voltage from no load to full load. Er tire supply fits inside SB-604 speaker cabinet Kit HP1144, 28 lbs., mailable
89.95*

New Heathkit SB-604 station speaker

Response-tailce I to SSB and designed o match the SB-104. Large e ough to house HP-1144 AC pow i supply Kit SB-604, 8 lbs., mailable29.95*

HEATHKIT ELECTRONIC CENTERS -
Units of Schlumberger Products Corporation Retail prices slightly higher.
ARIZ: Phoenix; CALIF.: Anaheim, EI Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: 'Denver; CONN: Hartford (Avon): FLA.: Miami (Hialeah), Tampa: Hartford (Avon); FLA.: Mlami (Hialeah). Tampa; GA.: Atlanta, IKL.. Chicago, Downers Grove; IND Louisville: LA.: New Orleans (Kenner); MD: Baltimore, Rockville: MASS: Boston (Wellesley); MICH.: Retroit: MINN: Minneapolis (Hopkins): MO.: St. Louis (Bridgeton): NFB.: Omaha: NJ MO.: Lawn; N.Y.: Buffalo (Amherst), New York City Jair Lawn; N.Y.: Buffalo (Amherst), New York City Jericho, L.L., Rochester. White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus; PA Phil). TXA, wick); TEXAS: Dallas, Houston; WASH.: Seattle;
WIS.: Milwaukee.

Heath Company, Dept. 20-11
Benton Harbor, Michigan 49022
HEATH

Send for your FREE 1975 catalog today.
\square Please send my free 1975 Heathkit Catalog.Please send the merchandise checked below. I've enclosed \$ \qquad plus shipping, in paymen
\square GR-2000 Color TV
\square GRA-2000-1 Digital clock module
\square GRA-2000-6 TV remote control
\square IC-2100 Calculator
$\square \mathrm{Cl}-1080$ Exhaust analyzer
\square GR-1075 Digital clock radio
\square GC-1093 Digital car clock/timer
\square JK-18A Junior electronics workshop
\square GC-1092A Digital clock with snooze alarm
\square GC-1092D Digital clock with date display
\square IO-4510 Oscilloscope (kit)
\square SO-4510 Oscilloscope (assembled)
\square IG-1271 Function generator (kit)
\square SG-1271 Function generator (assemble \square SB-104 Transceiver \square SB-104-1 Noise blancer \square SB-104-2 Mobile mo int \square SB-104-3 CW crysi al filter SB-230 1 kW linea \square SB-614 Monitor scefe \square SB-634 Station meni or SB-644 Remote Vfo \square HP-1144 AC powe simply \square SB-604 Station sวє子a er

Name
Address
City \qquad State \qquad Zip
*Mail order prices, $F O B$ factory
Prices and specifications subject to change without notice.
CL-541
 \& BREADBOARDING EQUIPMENT! dISCRETE COMPONENTS WITH NO SOLDERING!
Circuit Design's new catalog has everything you need to take you from circuit concept to working hardware in minutes. Featured items include the great SK-10 socket for solderless circuit design and testing, the NEW SK-20 socket (only $\$ 2.75$) for smaller circuits, the versatile Digi Designer (in kit form or assembled), a new Op-Amp Designer, plus power supplies, pulse generators, digital logic courses, plug-in socket boards, and much more.

Write today for your free copy.

CIRCUIT DESIGNS, INC.

P.O. Box 24, Shelton, Conn. 06484

Exclusive mail order dist. for E\&L Instruments.

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).

Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ iong. $\quad \$ 1.39$ $\$ 1.49$
Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible. Forked-tongue gripper. AcKleps 30. Completely flexible. Forked-tongue gripper. Ac-
cepts banana plug or bare lead. $6^{\prime \prime}$ long. $\$ 1.79$ cepts banana plug or bare lead. $6^{\prime \prime}$ long.
Kleps 40 . Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long. phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long. \$.89 All in red or black - specify. (Add $50 ¢$ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to.

New 1975 color TV circuits

The new sets have arrived and with them come some fascinating circuits. We've selected several of the more interesting ones and describe them here.

- Digital Remote Control For TV

Punch out the channel on a calculatortype keyboard. The set switches and the channel number appears on the screen. See how it works.

■ Build DVM Plug-In For Grinchwall

Add-on plug-in multimeter makes your Grinchwall digital instrument more useful than ever.

All About MOS Shift Registers

Learn how these special IC's work and how you can use them effectively.

PLUS

Step-By-Step Troubleshooting Charts Equipment Reports
 Appliance Clinic Jack Darr's Service Clinic

SHOPPING POWER FOR YOUR DOLLAR

FREE $\$ 1$ BUY WITH EVERY 10 YOU ORDER
Only applies to " $\$ 1$ " Buys

FREE GIFT WITH EVERY ORDER
CANADIANS: Ordering is easy-we do the paperwork-try a sm: H order

RCA 110° FLYBACK TRANSFORMER We scooped the Market. Latest type - standard for all 110° stand
TV's
RCA's design of large Coil produces 18KVassuring
width Incl.
adequate
Schematic Diagram application for any TV. $\$ 13.90$ List price $\$ 13.90 \quad 3^{95}$ 10% off in lots of
$0^{100^{\circ} \text { TV DEFLECTION YOKE }}{ }^{105}$ "COMBINATION SPECIAL" 6^{95} HCA 10° FLYBACK plus
110° DEFLECTION YOKE $\mathbf{9 0}^{\circ}$ FLYBACK TRANSFORMER 2^{95} for all type TV's incl schema
90° TV DEFLECTION YOKE for all type TV's incl schematic
70° FLYBACK TRANSFORMER 70 TV DEFTES incl schematic 2° for all type TV's incl schematic 2^{0} SHARP 110° FLYBACK \& YOKE COMBINATION \# SFT 592 Good for most portable T Rectangular 19 to $25^{\prime \prime}$ 70 COLORE YOKE For all round color CRT's 10
THL-33 2\% Accuracy-1 \%
I'recision Resistors-Meter Fuse
Protection Full Range-Complete 995 with test leads \& Ma
MATCHED PAIRS
TRANSISTOAS NPN \& PNP
(2N4252 2N2904) (2N2222-2N2907) 100 ZENITH TVTUNER
Model 175-1164 \& 175-1151
(Parallel)
Model 175-1120 \& 175-1118 (Series)

SARKES TARZIAN TUNER

 41 mc

Latest Compact Model good for all 41 mc TV's. BRAND NEW -

Best TUNER "SARKES TARZIAN" ever made - last word for stability, definition \& smoothness of operation An opportunity-to improve and bring your TV Receiver up-to-date.
Complete with Tubes

WESTINGHOUSE FM TUNER

\#476- -015D0 1 Transistor
WESTINGHOUSE FM TUNER
(12DT8 Tube)
UHF TUNER-Transistor Type Used in all TV sets
STANDARD TUNER-
Channel closed Grid)
PHILCO TV TUNERS
Model-76-13983-3 (5GJ7-3HQ5)

WELLS GARDNER TUNER Pa\#7A 120-1 (4GS7-2HA7 Tubes)
G.E.-TV TUNER (2GR5-4LJ8) Model \# EP 86x11
2-ELECTROLYTIC Condensers $100 / 75 \mathrm{mfd}-300 \mathrm{~V}, 70 \mathrm{mfd}-25 \mathrm{~V}$
300 mfd-200V, 200V
$300 / 60 \mathrm{mfd}-150 \mathrm{~V}$
PHILCO UHF/VHF TUNER
GE TV TUNER
ET 86x196, (6GK5-6BL8) …....... ${ }^{9}$
5-AC LINE CORDS
UNIVERSAL TV Antenna Back of 2^{9} BLUE LATE'RAL Magnet Assy BLUE LATERAL Magnet Assy. COLOR CONVERGENCE Assy. COLOR CONVERGENCE Assy.
Universal type-good for most set COLOR-TV RECTIFIER-Used in most color sets- 6500 kv 3 for 2 COLOR-TV CRT SOCKETS Wired leads, for all color TV's Wired leads, for all TV's

100

4^{95}
7^{95}

7^{95}

1^{00}

WESTINGHOUSE
 ALL TRANSISTOR HOME/OFFICE message center

Leaves messages for other for replay
Built in speaker/ minutes of for taik-into convenience illuminated signal shows when to 3 message is waiting Control adjusts playback volume without affecting recording volume . . . Capstan Drive: 795 BRAND NEW SOLO AS IS

SHANNON MYLAR RECORDING TAPE

$3{ }^{*}$	225'........... . 19	Cass	-60	. 59
31/4*	600'........... . 78	CAS	C-90	1.19
5	600'........... . 82	CASS	TE C-120	7
5	900'............ . 90	8-Tra	- 64 MTJ.	1.29
5*	- 1200'..........1.49	8-Tra	- 80 Mil .	1.59
5	- 1800'...........1.89			
7"	- 1200'........... . 97		PE REEL	
7	- 1800'...........1.32	31/4"	TAPE REEL	$\begin{aligned} & .09 \\ & .12 \end{aligned}$
$7^{\prime \prime}$	- 2400'...........1.99	5	TAPE REEL	. 29
7**	- 3600'.......... 3.49	$7{ }^{*}$	TAPE REEL	.. 35

TUBE SPECIAL
$60 \mathrm{CO}-12 \mathrm{BH} 7-18 \mathrm{FY} 6 \ldots5$ For 3^{50}
3CB6-6FQ7-6GH8-6JW8
8FQ7-12AT7-12BD6-12FX5 $\quad 5$ For 5^{00}
2CY5-3DT6-4DT6-5U8-6AF9
6CB6-6DW4-17BE3-17Z3
35EH5-50EH5
6CL8-6U8-10LZ8-12DQ65 For 700

TRANSISTOR RADIO
asst type good, bad, broken,
AS-1s, potluck
TAPE RECORDER
ass
\square
\square
bro
To

TUBE SPECIAL

3CB6-6FQ7-6GH8-6JW8
8FQ7-12AT7-12BD6-12FX5 5 For
2CY5-3DT6-4DT6-5U8 - 6AF9 35EH5-50EH5
6CL8-6U8-10LZ8-12DQ65 For 700

6AU8-25CD6-25E5 ….......... 5 For 10^{00}
 6AU8-25CD6 - 25E5 ….......... 5 For 10^{00}

WHILE SUPPLIES LAST
TRANSISTOR RADIO TAPE RECORDER
\qquad asso
brok
200
Top
Exc

\square^{7}
\square
\square
\square
\square
\square
\square_{8}^{7}
\square_{8}^{1}

\qquad

102
\square
70
sta
\square
\square
\square

102
\square
70
sta
\square
\square
\square
$\square_{\text {sta }}^{\text {sta }}$
$\square_{\text {sta }}^{30}$
\square_{8}^{20}
\square_{5}^{10}
\square_{8}^{25}
$\square_{\text {sta }}^{\text {sta }}$
$\square_{\text {sta }}^{30}$
\square_{8}^{20}
\square_{5}^{10}
\square_{8}^{25}sorted types good, bad
oken, zs-1s. potiuck
0 ASST. $1 / 2$ WESISTORS150$4^{00}$
Brands, Short L100 LOASST SLIDE SWITCHES 25-SYLVANIA HEAT, ote.

20-ASSORTED TV COILS \square I-ELECTROLYTIC ${ }^{\text {radio, }}$ e \square 200/300/100/100 MFD- 25 V . I-ELECTROLYTIC COND $100 \mathrm{MFD}-400 \mathrm{~V}$
\square^{100} BLED- ELECTROLYTIC COND
$\square_{20 / 20}^{20}$ MFD-450Y
\square Excellont motors
$\square^{\text {Excellent for hobbyist }} 10$ oz. Speaker
Ceramic Type. 8 Ohm

$\square 1$ GmD., 1000 PIV

$\square_{\mathrm{ge}}^{5-}$
$\square_{\mathrm{big}}^{25}$
$\square_{300}^{\mathrm{TV}}$-PNP TRANSISTOR 5-NPN TRANSISTORS
--ASSORTED TRANSISTORS$\square_{\mathrm{bi}}^{\mathrm{TV}}$
V TWIN LEAD-IN
\square 10-MINI ELECTROLYTIC Cond
\square UHF or VHF Matching Trans. Simple Fcol-proo ing Trans.S-ELECTROLYTIC COND5/30mid -150 V$\square_{\text {B ELEMENT Color Outdoor }}^{8}$
$\square{ }_{\text {Grey }}^{4-P}$
$\square_{\text {BRIGHTNER }}^{70^{\circ} \text { COLOR }}$
\square^{90} COLOR

Colorburst Quartz-Crystalor most color TV sets 3579.545popular replacements for
most COLOR TV

1^{100}

MARKET SCOOP (:O UMN

$$
\begin{aligned}
& \begin{array}{l}
\text { ZENITH COIO } \\
\text { Part \# } 221-39
\end{array} \\
& 3^{95} \\
& \begin{array}{l}
\text { (Sprague EqV. TVC M-1) } \\
\text { CO-AX CABLE RG59U (lack) } \\
\mathbf{2}^{69}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Used in Scott-Fisher etc. } \\
& \text { FO- ASSORTED IC's }
\end{aligned}
$$

Transistor Spee ials-Your Choiee
SK3006. SK3018, SK30:0 1^{25}
Transistor Specials-Y(ur Choiee
SK3009. SK3024, SK3G40 1^{98}
Outdoor/Indoor MINI \$PIAKE
$4^{\prime \prime}-1$ Oz. Magnet-8 OII 5^{50}
Audio level control1^{00}
For CoLOR TV 4 Cell-
Replamper diod eitr
$\begin{array}{r}\$ 2.29 \\ \hline\end{array}$ Dual - RCA part \# 1359s79^{95}
Model KT-403DC Recor d
TELMATIC Tuner-Mat 38^{50}
Instant Tuner Chect
49^{98}
Combo Rigs-E Rigs ${ }^{\text {or }} 1^{6}$
\square STEREO MICROPHOHE
FL 1979/01 Made in Hrlinid SET $\mathbf{6}^{50}$25' Shiold
\square_{P}^{5}Grey $25 / 1$
$50-A S S O$
\square all
-RADIo \& TV SOCKIITS
type 7 pin. 8 pin.
gir1^{00}
\square ($10-20-40$ OHM Imped)
$25^{\circ}-$ MICROPHONE
Deluxe. 2 conductor feloil bed 1^{89}10
Good for most set 6^{95}
List Price- \$36.
1^{98}
Model FT425
KLEPS "GLEVER"T T:S" PRODS
ut ofout of way places instust it canno
slip - accommodates ine. wire or
\square PRUF 10-
\square KLEPS 10 - Probe 89°
\square Boathook Glamp 1^{39}
KLEPS 20-
Boathook Clam 1^{49}
\square KLEPS 30- 1^{79}
KLEPS 40 FLEXIB/-E PC 2^{59}
KLEPS I-ECONOMH
KANDU—Printed Cirruli Kit
Trace \& Etch your ow 1 795
4-50' HANKS Hook-U U U_{1} ' 1^{00}
100^{\prime}-SPOOL 2^{00}
$10-A S S T$ RADIO \& T V TUBES 100
Every Tube a good nur be
5-Audio Output TRA48
S-Audio Output TRANA
Sub-min for Trans Patic
\square 5-I.F. CoII TRANSFOIMERS100
456-ke for Transistor kna Top quality Speclal busALL AMERICAN TUBE KIT
$(12 A V 6-12 B E 6-12 B A B-35$ 2^{95}(12AV6-12BE6-12BAB-3514-50C5)
VU I"PANEL METER1^{29}

MINI-BAR color generator

BG-10 battery-operated, fits in shirt pocket!
No AC plug in . . . automatic on \& off with LED indicator . . fast, easy hook up with coaxial cable all essential patterns... • Low power consumption for extended battery life (Uses inexpensive 9 volt batteries) - Shuts off when not in use - Enclosed RF cable compartment • Size: $51 / 2^{\prime \prime} \times 3^{\prime \prime} \times 11 / 8^{\prime \prime}$. Only 12 ounces - TV station type sync signals - CMOS LSI IC for all counting functions no internal adjustments - RF output on Ch .4 or 5.
BG-10 (less battery)
$\$ 89.50$
CC-1 Carrying Pouch
\$ 2.95

C
 LECTROTECH, INC.
 5810 N . Western Ave. Avalable in Canada Chicago, lllinois 60659 (312) 769-6262
 from Superior Electronics

Circle 80 on reader service card

the smallest digital multimeter

 $\xrightarrow{\longrightarrow} M$-4

Full four digits.
$1.9^{\prime \prime} \mathrm{H} \times 2.7^{\circ} \mathrm{W} \times 4.0^{\circ} \mathrm{D}$
15 ranges $\& 3$ functions - standard.
100 microvolt resolution.
Automatic zeroing. Automatic polarity.
MOS/LSI construction.

accuracy

Call Tom Cox collect at 714-755-1136 (TWX 910-322-1132) for more details or delivery

NON-LINEAR SYSTEMS, INC.
Originator of the digital voltmeter
P.O. Box N. Del Mar, California 92014

BUILD—with 1 IC 3-way function generator

Build this precision instrument for less than $\$ 11$. Add your own case and power supply and you've got a quality compact generator

By ROBERT COLMAN

A Large number of Radio-Electronics readers own elaborate and costly high-quality, high-fidelity sound systems. To check the performance of sound systems of this type requires the use of sophisticated high-performance signal generators. Unfortunately, such instruments are usually very costly and would not be used often enough to justify their purchase.

But there is an alternative. It is a 14 -pin monolithic integrated circuit which can deliver sine, square, triangle and pulse waveforms that are highly accurate. This new IC is the Intersil 8038. It operates over a frequency range from .001 Hz to 1 MHz and is highly stable over a wide range of temperature and supply voltages. By using additional external voltages, it is even possible to use the IC as a sweep generator and add FM modulation. The device uses the latest technology, including thin-film resistors and Schottkybarrier layer diodes.

Although the more complex functions of the 8038 are certain to interest some readers, we were primarily interested in the design of a basic audio signal generator that would deliver signals from 20 Hz to 20 kHz using only a single tuning control. The output signals produced by the generator are square, triangle and sine waves.

How the circuit works

A block diagram of the 8038 IC function generator is shown in Figure 1. The external timing capacitor C1 is alternately charged and discharged by two current sources.

FIG. 1 - block diagram of waveform generator. All elements, except for C1, are in the IC.

CALLOUTS IN PHOTO of completed generator show where 10 mount parts on the circuit board.

Current source 1 is on at all times while current source 2 is switched on and off by a flip-flop.

Assuming that, initially, the flip-flop turns off current source 2 , the capacitor is charged by current source 1 with a current I. As a result, the voltage across the capacitor rises linearily with time. When the voltage across the capacitor reaches the threshold voltage of comparator 1 (which is set at $2 / 3$ of the supply voltage), the flip-flop changes state and turns on current source 2 which carries a current of $2 I$. The capacitor is discharged with a net current I and the voltage across it drops linearily with time. As the capacitor discharges toward a negative peak, it eventually reaches the threshold voltage of comparator 2 (set at $1 / 3$ of the supply voltage). When this occurs, the comparator output resets the flip-flop to its original state and current source 2 is turned off. At this point, the cycle is repeated.

The triangular waveform, which is developed across the timing capacitor, is fed internally to a buffer amplifier and is available for external use at the output pin 3. In addition, the triangle waveform is fed to a sine converter, which consists of a non-linear network, for conversion to a sinusoidal waveform. According to Intersil, the typical total harmonic distortion of the sine wave output is less than 1%. With careful adjustment, distortion levets as low as 0.5% are possible.

The square wave output is taken from the flip-flop and fed to another buffer amplifier, the collector of which is connected to output pin 9 . In this manner, the supply voltage for the square wave output is independent of the rest of the circuitry and a separate 5 V supply may be used to provide TTL compatibility.

Everything needed to build a complete decade counter ($0-9$) including a printed circuit baard. Operates from a 5 Volt D.C. supply. Can be used in hundreds of applications.

See your nearby CALECTRO distributor for all the most popular digital displays and integrated circuits. Also, get your copy of the new CALECTRO DIGITAL PROJECTS HANDBOOK!

NOVEMBER 1974

Circle 82 on reader service card

Out-of-Circuit
Transistor Analyzer

- Dynarnic In-Circuit

Transistor \& Padio Tester

- Gignal Generator
- Signal Tracer • Voltmeter
- Milliammeter
- Battery Tester
- Diode Checker

Transistor Analyzer model 212

Factory Wired \& Tested- $\mathbf{\$ 2 6 . 9 5}$
Easy-to-Assemble Kit- $\mathbf{\$ 1 7 . 9 5}$
YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facilities you need to check the transistors themseives - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact 6 -inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.

Features:
Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Universal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.

Dynamic test for all transistors as signal amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit powersupply voltages on 12 -voit scale. No external power source needed. Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three external leads for in-circuit testing and a pair of test leads for measuring voltage and current. Comes complete with instruction manual and transistor listing.

FIG. 2-DETAILED CIRCUIT DIAGRAM of the intersil 8038 IC waveform generator

Design

Since we propose to sweep the frequency of the generator over a 1000:l range, let's take a look at what determines the output frequency. Figure 2 shows the detailed circuit diagram of the 8038 IC waveform generator.

The voltage developed across the two external resistors, R1 and R2, produces two currents to charge and discharge the timing capacitor tied to pin 10 . Because this is a linear system, dropping the voltage across the external resistors from 10 volts to 1 volt will also drop the lower output frequency by a factor of 10 . This will increase the output frequency range by $10: 1$. Lowering the voltage still further from 1 volt to 100 mV will also increase the output frequency range by another $10: 1$. By causing the voltage across the external resistors to change, say from 10 V to 10 mV , we can vary the output frequency at least $1000: 1$.

Transistors Q2 and Q3 supply the charging current to the external capacitor. This current is determined by the value of resistors R1 and R2, as well as the bias current of

FIG. 3-SCHEMATIC OF THE GENERATOR. Circuit is built around the Intersil 8038 waveform generator IC.

PARTS LIST
R1，R2－ 3,600 ohms， $1 / 4$ W， 10%
R3－pot，10，000 ohms，linear taper
R4－ 20,000 ohms， $1 / 4 \mathrm{~W}, 10 \%$
R5－ 1,000 ohms，trimmer resistor
R6－8，200，000 ohms， $1 / 4 \mathrm{~W}, 10 \%$
R7－3，300 ohms， $1 / 4$ W， 10%
R8，R9－100，000 ohms，trimmer resistor
C1－．0039－μ F Mylar
$\mathrm{C} 2-1-\mu \mathrm{F} 25 \mathrm{Vdc}$ disc
D1－1N914A silicon diode
ICI－Intersil 8038CC waveform generator Power source，case，PC board，wire， solder，hardware．
The following parts are available from Photolume Corporation
118 East 28th Street New York，N．Y． 10016
Parts Kit，NOT including case and power supply－$\$ 10.95$ incl．postage and insurance．
Circuit board－\＄2．50．

FIG．4－FULL－SIZE FOIL PATTERN of the circuit board for the generator．

Put Professional Knowledge ancla COLLEGE DEGR｜E
in your Electronics Career throu！gh

by correspondence，while continuing your pres－ ent job．No commuting to class．Study at your own pace．Learn from complete and explicit lesson materials，with additional assistance from our home study instructors．Advance as last as you wish，but take all the time you need to master each topic．Profit from，and enjoy，the advaritages of independent study．
The Grantham correspondence degree program in electronics is comprehensive．It begins with basics，written in very simple language and continues through the B．S．E．E．degres level． Throughout the entire program，heavy ernpha－ sis is placed on clear explanations written it great detail，progressing from the simple to the com－ plex，in easy steps．
Our free bulletin gives complete details on the curriculum，the degrees awarded，the require－ ments for each degree，and how to enroll．

GRANTHAM SCHOOL OF ENGINEELING

 2000 Stoner Ave．，Los Angeles CA 91025 －Telephone（213）477－1901
Worldwide Career Training thru Home Study Mail the coupon below for free bulletin．

Grantham School of Engineering RE 11－74 2000 Stoner Ave．，Los Angeles，CA 90025

transistor Q1. Due to the $\mathrm{V}_{\mathrm{b} \cdot}$ mismatch between transistors Q1 and Q2 (also Q1 and Q3) and because of the circuit geometries and current levels involved, the voltage across the external resistors R1 and R2, with pin 8 connected directly to $+\mathrm{V}_{\text {ce }}$, will be 100 mV or more, with a $100: 1$ sweep ratio. To obtain the smaller voltages necessary for the required $1000: 1$ frequency range, the voltage at pin 8 must be raised above $+V_{\text {ce }}$. The required voltage difference need only be a few hundred millivolts, which we can get without a separate power supply by simply adding a series diode from pin 6 to the external resistors R1 and R2 (see Fig. 3). This raises the applied voltage to pin 8 by one diode drop above $+V_{i c}$.

The charging current carried by transistors Q2 and Q3 is determined by the impedance between pins 4 and 5 , as well as the bias currents. Any small offset or differential voltage will cause an imbalance in the charge and discharge currents and a marked change in the duty cycle. While a single external resistor is fine for simple circuits, for our more demanding performance requirement, we use the separate external resistors R1 and R2. By using separate resistors, we can vary the ratio of the charge-to-discharge rate of the external capacitor. In this manner, the duty cycle of the square wave output signal is variable from 2% to 98% and the triangle output waveform can be adjusted for either a positive or negative going sawtooth or ramp.

To further lower the output distortion, the voltages applied to pins 1 and 12 are adjusted using two trim resistors (see Fig. 3). In addition, we can compensate for the remaining duty-cycle error by connecting a high value of resistance from pin 5 to $-V_{\text {re }}$ which bleeds a small amount of current away from pin 5 and tends to bring the duty cycle back to 50%. With these basic adjustments, we have a reasonable compromise between low distortion and wide frequency range.

The schematic diagram of the actual generator circuit is shown in Fig. 3. The oscillator frequency of the 8038 IC is set by the value of timing capacitor $\mathrm{Cl}(.0039 \mu \mathrm{~F})$ and the voltage applied to pin 8 .

Construction

Construction of the actual audio function generator is easy. Only a few components are required in addition to the IC and power supply. Printed circuit construction is recommended and a foil pattern (Fig. 4) is supplied for the reader who wants to make his own. An etched and drilled circuit board is available (see parts list) for those who prefer to purchase one. While component tolerances are not critical, the use of a good quality Mylar film capacitor for C 1 is recommended for stability of the output frequencies.

All the parts of the generator, with the exception of the FREQUENCY adjust potentiometer, are mounted on the circuit board. Parts layout is shown in the head photo.

Install and solder all resistors, capacitors and trimmer resistors on the PC board first. Solder the jumper in place on the foil side of the board. Next, install and solder diode. D1, being sure to observe the polarity.
Now install IC1 on the board. We recommend the use of an IC socket to prevent possible damage to the IC during soldering and to provide for easy replacement in case it malfunctions. The parts kit which is available (see parts list) includes an IC socket which consists of two mOLEX connectors and two plastic insulating jackets. Install the molex connectors into the plastic jackets and solder the units to the PC board, being careful not to melt the plastic jackets with the heat from the soldering iron. After soldering, carefully break off the metal tab on each connector and install the IC.

The entire generator board with power supply or bat-

TYPICAL ± 15 DUAL OUTPUT POWER SUPPLY
TWO BATTERY $£ 9 V$ SUPPLY

FIG. 5-POWER SUPPLY CIRCUITS. a-A Zener regulated supply. b-How batteries can be used.
teries and frequency adjust pot will fit into a case of the type readily available to readers. It will be necessary to obtain either output jacks or a terminal strip for the outputs.

Install the FREQUENCY adJUST pot and output jacks on the case and solder leads to the appropriate points on the PC board. Install the PC board in the case, along with a source of power and a switch for turning it off and on.

Any simple power supply having reasonable regulation may be used. But be sure you do not exceed the manufacturer's recommended rating of $\pm 15 \mathrm{Vdc}$ or +30 Vdc of the 8038 IC . The circuit of a Zener regulated supply is shown in Fig. 5-a. Batteries can also be used, but they should be connected as shown in Fig. 5-b. Two 9-volt batteries should supply ample power, but keep in mind that the unit draws about 15 mA when selecting the batteries.

FIG. 6 - DISTORTED output waveform.

FIG. 8 - $\mathbf{2 0 - K H z}$ triangle wave output.

FIG. 7 - $100-\mathrm{Hz}$ SINE-WAVE output.

FIG. 9 - 20-KHz SQUARE wave output signal.

Adjustment

When assembly is completed and you are ready to put the function generator into operation, apply dc power to the unit.

To adjust for minimum distortion, connect your scope probe to the triangle waveform output and observe the symmetry of the waveform while adjusting the duty cycle trimmer R5. Adjust the sine-wave next by observing the waveform and alternately adjusting trimmer potentiometers R8 and R9 for minimum distortion. Figure 6 shows the distorted sine-wave when the trimmer pot is not adjusted correctly. If you have a distortion meter, you may use it as a final check on the setting of the sine-wave trimmers and adjusting them for minimum distortion. Check the square-wave output and readjust trimmer R5 if necessary for a 50% duty cycle. This completes the adjustments of the generator. The actual output waveforms are shown in Fig. 7, 8 and 9.

R-E

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute
We are proud to announce two great new courses in Engineering Mathematics or the electronic industry
These unusual couises are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom o thousands of men, from all walks of life, on mathematics, and electrical and Younic engineering
You will have to see the lessons to apNeciate them!
Now you can master engineering mathematics and actually enioy doing it! WE ARE THIS SURE: you sign no contracts-you order your lessons on a money-back guarantee.
in plain language, if you aren't satisfied you don't pay, and there are no strings attached
Write today for more information and your outline of courses.
You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

Dept. RE-1174, P.O. Box 1189 , Panama City, Fla. 32401

Circle 88 on reader service card

2000 items - 112 packed pages

SEND FREE CATALOG 674 TO:

\square

COMPUTER TERMINAL
(continued from page 91)
connected to the computer and the phone is in the top of the terminal, you can set your audio level. If the recorder used has an automatic level control, use it; if not, record at a " 0 " dB level (maximum undistorted level).

To play a tape back, the mode switch should be in the in/out position and the playback level should be twice as high as to cause the carrier LED to light. Make sure the baud rate is set for the proper data rate on the recording. The connection to the CT256 stays the same, just change the connection on the recorder from mic. input to line out or ext. speaker.

Assembly

Building a one page CT 256 includes parts installation and wiring of 2 large double sided circuit boards, one medium and one small single sided board. For a multipage unit there is a third large double sided board containing up to three additional pages of memory plus power switching circuitry. First, parts are installed on all boards. (Be sure to follow handling instructions for MOS chips.) Switches and connectors are wired to the main board before its installation. Once the main board is installed in the chassis, the power supply board is wired in, the 5 volt regulators are installed and wired, and wiring to the acoustic coupler board completed (the kit comes with the acoustic coupler board assembled, tested, adjusted and ininstalled in top cover of main case). Next, the switches, connectors and displays are mounted.

The keyboard assembly should be completed at this time, including assembly and wiring of keyboard connector and cable.

After a final wiring check and inspection for solder bridges, connect keyboard to main unit, connect self scan display to the main board, and set mode switch to local. Connect to a 115 Vac power source and turn power switch to on. The page 1 LED should light, and characters should be entered from the keyboard. If problems arise, isolate the problems and analyze them using information from the text and diagrams. An oscilloscope is indispensable in trouble shooting this type of circuitry.

The following items are available from MITS, Micro-Instrumentation Telemetry Systems Inc., 6328 Linn, N.E., Albuquerque, NM 87108.

Complete kit of all parts ...-.-. $\$ 495.00$
Kit less cabinet \& power supply $\mathbf{\$ 3 9 5 . 0 0}$ Assembled Terminal \qquad $\$ 695.00$

TABLE OF CONTROL CHARACTERS AND THEIR FUNCTION IN CT256

Control G-Bell signal-used to alert operator-a $1 / 2$ second $1-\mathrm{kHz}$ audible tone.
Control H-Backspace-moves data in display one position to the right-does not change data in memory.
Control I-Advance space-moves data in display one position to the left-does not change data in memory.
Control J-Control character for linefeed. Since it has no meaning in the CT-256 it is decoded and entered into memory as a space.

COLLDCTORS!

We've just added the 1927 Radio Encyclopedia to your growing library-
S. GERNSBACK'S 1927 RADIO ENCYCLOPEDIA is your technical book on wireless and early radio. Deluxe illustrated reprint of the original. 175 pages. $\$ 12.95$ hard-cover $\$ 9.95$ soft-cover.
VINTAGE RADIO is the fascinating photo refer ence for collectors and historians, 1887-1929. 263 pages, over 1,000 photos. $\$ 6.95$ hard-cover, $\$ 4.95$ soft-cover.
RADIO COLLECTOR'S GUIDE is the data book for collectors, $\mathbf{5 0 , 0 0 0}$ facts, 1921-1932. 264 pages, $\$ 3.95$ soft-cover

And now while they last-Most-Often-Needed 1926-1950 Diagrams

The original Supreme Publications books. Schematies of over 3,000 radio models from 1926 thru 1950. Restore those old sets, or use your books for valuable historical information,

- 1926-1938 volume, 600 models, $\$ 7.00$
- $194942,46,48,49,50, \$ 4.00$ each.
- All seven volumes, special price $\$ 28.00$.

Quantities of original books are limited. Order now and avoid a wait for reprints.

SEND TODAY to Vintage Radio, Dep't R, Box 2045, Palos Verdes Peninsula, CA., 90274. Postage Paid. California residents add 6\% tax.

COLLSCTORS!

GOOD TOOLS！

20－70 Power Microscope

Pocket－size 20 to 70 power＇scope gives you a close－up view of circuitry，components，tiny metal or plastic parts，the surfaces of mirrors， metals，glass ．．．Wherever you are in the field， in the lab，at the work bench，in the home． Comes with tripod legs，pen light，zipper case．

Magna－Lite ${ }^{\text {® }}$ Illuminated Magnifier

MAGNA－LITE，with new high power lens，lets you focus on fine detail regardless of lighting conditions．Its battery operated light beam bathes magnified area with just the right amount of light for perfect viewing．Weighs just $11 / 2$ ounces；fits the hand like a glove．Comes with replaceable penlight batteries．

Vacuum

SPECIAL PRICE Cleaner／Blower THIS MONTH ONLY！

Extremely powerful vacuum，strong enough to suck fumes and dust out of the air in enclosed spaces，get rid of it down the drain or out a window．A blower too－dry electronic assem－ blies where pot glue is used，or pinpoint a blast． With flexible hose，wands，and assortment of nozzles，in neat and sturdy attache case．

Ask for FREE Tools Catalog
ELECTRONIC TOOLS OIVISION C．H．MITCHELL CO．
14614 Raymer St．／Van Nuys，CA 91405
Circle 90 on reader service card

COMPONENT

 LEAD BENDER－Eliminates trial and error lead bending．
－Fast，exact，thumbwheel adjusted spacing between bends．
－＂Breezes＂through special units and short production runs．
－Increases production 50\％．Pays for it－ self within a week．

Ask for MODEL N－300 for $1 / 4$ watt and larger components；MODEL N． 400 for micro－components．

Immediate delivery from
HARWIL COMPANY
903 Colorado Avenue．Santa Monica
California 90401 phone： 213 ／ 394.4710
Circle 92 on reader service card

Control K－Home－homes memory ad dress counters to cursor position．
Control L－Home and clear－homes memory address and clears page．
Control M－Control character for car－ riage return－has no mean－ ing for the CT256．It is de－ coded and entered into memory as a space．
Control N－Control character for cur－ sor up－has no meaning for the CT256 and is decoded and entered into memory as a space．
Control O—Address function－sets up receive circuitry to use the next two characters to shift data address to a selected line and position．（See ex－ planation of address func－ tion．）

DEFINITIONS FOR

SWITCHES AND CONNECTORS

CT256 KEYBOARD

Special Key Functions（Top Row of
Black Keys）
$[\leftarrow]$ Shift left－Moves data left one position（advance）．
［H］Home－Returns data to 0， 0 posi－ tion．
$[\rightarrow]$ Shift right－Moves data right one position（backspace）．
［A］Address－Three keystrokes are necessary to select an address （an exact position on a page）．Op－ erator goes to desired position on the page by pressing［A］，then presses the specific key for line position（1－16），then presses the third key which selects data posi－ tion in the line（1－16）．Characters are not entered until address se－ quence has been completed．
［C］Clear－Clears page and returns data to 0,0 position（home）．
［T］Transmit－Automatically transmits character in cursor position to computer and is used to transmit information line by line from the terminal memory to the computer． Since the terminal memory does not store carriage returns（end of line），the＂＠＂symbol（shift［P］） is placed in memory at the end of each line．The＂＠＂symbol stops transmission and the operator can manually press＂return＂to indi－ cate end of line．

Other Special－Function Keys

Rept Repeat－Causes a character to be entered repeatedly．Press character key and Rept．key．
Rub Deletes previous character．
Out When working with computer．
Shift Allows entry of upper－case characters indicated on keytops． Press shift，then upper－case character desired．
Ctrl Control－Allows entry of special control signals to computer， i．e．， Ctrl and G is bell signal．

INDICATORS on FRONT of CT256．

P1－P4 Indicates page displayed．
Carrier Indicates when $2-\mathrm{kHz}$ tone is received from computer via telephone or tape recording．

The Ulimate in Ignition Syste s！

\star eliminates breaker podrts． Periect Timing and Dwell never cotare！
\star Eliminates Tune－ups．
Never wears out or needs any Mainten ance．

\star The Most Advanced

 ＇OPTO－ELECTRIC SYSTEM＇The Allison Breakerless System eliminates the－Poi its and Condenser，replacing them with an Opto－Elect on l Trigger，using a Light－Emitting Diode and Phototransi cor Also completely eliminates wiper－arm＂friction＂wap The only＂TRUE＂Electronic Ignition that you can nstall for under $\$ 100$ ．Gives 40 －times more Timing A．crure cy than ANY system using mechanical Breaker－Points！
Unimited RPM．Smoother running（No timing i uc ation as with Magnetic units）．Unaffected by Temperar ure Moisture，or Vibration！All Solid－State Compone ts． Easier Starting under any condition！Increased Hirs power Sparkplugs last longer．Perfect timing increases exigit ie Efficiency and Gas Mileage up to 30% ？

> - Quick and Easy Installation!
＊Tested and Proven reliability．
Only $\mathbf{\$ 4 9 . 5}$－SATISFACTION GUARIN EED！
－Complete－1－YEAR FACTORY WA RRINTY
（State Make，Year，Engine Size）．（Calit．Res ass Tax）．
－CONVERT Your＂C－D＂UNIt to breakeele！s！ ＂TRIGGER－UNIT＂ONLY $\$ 34.95$
－Send Postcard for FREE BROCHURE To ay． ALLISON AUTOMOTIVE CO．
P．O．Box $881-\mathrm{L}$ ，TEMPLE CITY，CAL． 11 i 30
Circle 91 on reader service card

SPECTACULAR $25^{\text {th }}{ }^{\text {ANNIVERSARY }}$ SALE!!

Incredible Savings Free Foothall

TEST EQUIPMENT

Model WV 98C
Senior VoltOhmyst
List \$109.00
Our Price $\$ 88.50$

Model WT-333A
Picture Tube Tester/Rejuvenator List \$199.00 Our Price $\$ 162.50$

Digital Meters

B\&K 281	List $\$ 169.95$		Our Price $\$ 144.50$
B\&K 282	List 199.95		Our Price
Leader LDM 850	List 359.95		Our Price
$\mathbf{3 0 5 . 9 6}$			

Full Line of All Popular Brand Test Equipment Drastically Reduced

$$
\begin{array}{lll}
\text { EICO } & \text { B\&K } & \text { SENCORE } \\
\text { LEADER } & \text { RCA } & \text { HICKOK }
\end{array}
$$

1000's of Name Brand Items. Check These Typical Values.

SERVICE AIDS

Castle Mk V Master Subber
Castle Nik IV A
Telematic MAP 3500 Transverter
Mura NH 452000 ohm VOM

PARTS

Sarkes Tarzian Tuner

IR-Focus Rect 6500 PIV
10 for 8.00
Telematic CR 25090° Color Booster 4 for 18.00 Workman FRTV Universal Color Degaussing Kit 3 for 5.97 Thordarson Yokes

Y 130 (Zenith equiv.)
ea. 8.95

TUBES (ICC/Servicemaster)

3 A 3	10 for	\$10.00	6JE6	10	for	22.00
3AT2	10 for	9.80	17JZ8	. 10	for	9.50
6BK4	10 for	19.50	$23 Z 9$	10	for	12.00
6CG7	10 for	7.20	33GY7	. 10	for	16.00
6DW4/6CL3	. 10 for	19.20	38 HE 7	. 10	for	18.00
6EA8	. 10 for	9.50	6GH8	. 50	for	34.00

Complete inventory of ICC/Servicemaster and Raytheon tubes

FREE 48 pg Discount Catalog

FREE regulation football with every order of $\$ 100$ or more accompanied by this ad
Minimum Order: $\$ 50.00$
Send Check or Money Order. Add $\$ 100$ for Shipping and Insurance.

Radio Supply Co., Inc
558 Morris Ave., Bronx. N. Y. 10451 Tel. (212) 585-0330

SIMPLIFIED COMPUTER PROGRAMMING-THE EASY RPG WAY, by Kelton Carson. TAB Books, Blue Ridge Summit, PA 17214. 240 pp. 81/2x51/4 in. Hardcover \$8.95; Softcover \$5.95.
A computer, being a very complex system, requires literally thousands of steps and instructions to perform even a simple operation. The instructions are provided by a program which may be compared to a list of instructions for computing the square root, for example. Rather than actually write out the thousands of intructions for a computer, the programmer uses a language to have the computer prepare a program for him. By doing this, all that is left for the programmer is to write a few instructions in a few simple forms. The computer then translates the simple people language of the forms to the complex machine language of the computer. This book shows how it's done.

Resistive and Reactive CIRCUITS, by Albert Paul Malvino. McGraw-Hill Book Co., 1221 Avenue of the Americas, New York, NY 10020. 592 pp. $91 / 4 \times 71 / 4 \mathrm{in}$. Hardcover $\$ 12.95$.

A comprehensive textbook that provides all the information needed to prepare a technician for more advanced electronic courses. The first part of this book discusses resistive circuits with dc or ac sources as these are very prominent today because of directcoupled circuits. The second part of the book covers reactive circuits such as transients, ac theory without using trigonometry or complex numbers. The final section of the book which does require a knowledge of trigonometry goes into extensive coverage of things such as phasor analysis, resonance and instantaneous ac analysis. Definitely a textbook quite valuable to anyone who wants to more fully understand both resistive and reactive circuitry.

SOLID-STATE IGNITION SYSTEMS, by R.F. Graf and G.J. Whalen. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, IN 46268. $136 \mathrm{pp} .81 / 4 \times 51 / 4 \mathrm{in}$. Softcover $\$ 4.50$ (in Canada $\$ 5.40$).

Solid-state ignition is a fact of life in the modern car. There are many types of systems reflecting the various schools of thought about what constitutes the ideal solid-state ignition system. In this book, you will find all the known commercially available methods of solid-state ignition. The authors have conducted careful examinat:ons of original equipment designs as well as add-on systems and all are presented here in great detail. The first chapter describes the phenomenon of spark ignition in easy-to-understand terms. Chapter two then relates how the conventional ignition system produces a spark. Chapter three covers semiconductors and how they are used in ignition systems. Chapters four and five give complete details on existing systems. The last chapter provides data for servicing and troubleshooting modern electronics ignition systems.

HANDBOOK OF MODERN SOLID-STATE AMPLIFIERS, by John D. Lenk. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632. 414 pp. $91 / 4 \times 6$ in. Hardcover $\$ 15.00$.

Here is a detailed treatment of both the theory and practice of modern electronic amplifiers. It is perhaps the most comprehensive handbook available today on circuit theory and analysis at the technician level featuring simplified guidelines for practical design, complete test procedures and practical troubleshooting techniques. The book describes all types of amplifiers in common use-audio, rf, direct-coupled, differential, compounds and op-amps. It also covers both discrete amplifier circuits and selected IC's. It is well suited to a board readership-students designers, technicians and anyone else who would like to have a source of up-to-date information on solid-state amplifiers.
TTL COOKBOOK, by Donald E. Lancaster. Howard W. Sams \& Co., Inc., 4300 W. 62 SI., Indianapolis, IN 46268. 335 pp. 81/4x51/4 in. Softcover $\$ 8.95$ (in Canada $\$ 10.75$).
In mid-1972, an electronic revolution took place. For the first time, a person could go out and purchase a logic gate for 5 c provided you bought four of them at once in a single 20c package. These gates were TTL (transistor-transistor-logic), a very versatile, widely available and fast way of performing logic operations. The TTL Cookbook is about TTL. It shows you what TTL is and how to use it. It is written at a time when TTL IC's are widely and readily available. After covering the basics of TTL, who makes it and where to get data, it goes on to a kind of catalog of TTL devices. Ten applications and illustrations of TTL IC use start coming up. There is a complete chapter on logic applications, another on gate and timer circuits, still another on clock logic and off we go. We continue through divide-by- N counters, shift registers, noise generators and rate multipliers. The final chapter, called Getting it All Together, shows several up-to-the-minute appications of real devices that can be built using TTL logic.

market center

CLASSIFIED COMMERCIAL RATE（for firms or individuals offering commercial products or services）．\＄1．15 per word ．．．minimum 10 words．
NONCOMMERCIAL RATE（for individuals who want to buy or sell personal items）70c per word ．．．no minimum．
FIRST WORD AND NAME set in bold caps at no extra charge．Additional bold face at 10c per word．Payment must accompany all ads except those placed by accredited advertising agencies． 10% discount on 12 consecutive insertions，if paid in advance．Misleading or objectionable ads not accepted．Copy to be in our hands on the 26 th of the third month preceding the date of the issue（i．e．August isue closes May 26）．When normal closing date falls on Saturday，Sunday or a holiday，issue closes on preceding working day．

PLANS \＆KITS

CONVERT any television to sensitive，big－ screen oscilloscope．Only minor changes required．No electronic experience neces－ sary．Illustrated plans $\$ 2.00$ ．SANDERS，Dept． A－25，Box 92102，Houston，TX 77010
FREE catalog．Most unusual electronic kits available．Music accessories，surf，wind synthesizers，wind chimes，many others． PAIA ELECTRONICS，Box B14359，Oklahoma City，OK 73114
PLAY ping pong on your TV．Plans $\$ 3.50$ complete units info 25c．D．DUNCAN， 20650 Runnymede，Conoga Park，CA 91306

LCEPVi digital crosshatch

gives proffessional．accurate color t．v CONVERGENCE．DIGITAL IC＇S COUPLED WITH A CRYSTAL TIMEBASE OSCILLATOR PROVIDE SYNC FOR PRECISE HORIZONTAL \＆VERTICAL LINES accurate ax dot or chosshatch pattern ac power $2 \times 3 \frac{3}{4} \times 6$ IN WT $240 Z$ HISIN IN TOOLKIT．

COMES COMPLETE WITH ALL PARTS，CASE CRYSTAL AND GUIDE TO ASSEmbly ©USE

$$
\text { KIT } \$ 31.95 \text { COMPLETELY } \$ 41.95
$$

PHOTOLUME CORP．

118E2BET．NEW YORK，N．Y．1001E

ELECTRONIC Lock Plans．Advanced cir－ cuits，pick proof，push button，frequency key，analog key．$\$ 2.50$ ea．， $3 / \$ 6.50$ DIGI－ LOCK， 7901 SW 64 Ave．，\＃13，South Miami， FL 33143
ELECTRONIC organ kits，keyboards and many components．Independent and divider tone generators．All diode keying．I．C．cir－ cuitry．Supplement your Artisan Organ． 350 for catalog．DEVTRONIX ORGAN PRODUCTS Dept．B， 5872 Amapola Dr．，San Jose，CA 95129

EDUCATION \＆INSTRUCTION

SHORTCUT to success：Highly effective profitable short courses（75 courses）．Study at home．Diploma awarded．Our 29th year！ Free literature，CIEE－E Box 20345，Jackson MS 39209.

BUSINESS OPPORTUNITIES

START small，highly profitable electronic production in your basement．Investment， knowledge unnecessary．Free illustrated liter－ ature．BARTA－AK，Box 248，Walnut Creek， CA 94597

EARN 뭉 5500 WEEKLY OR MORE－EASYI

TELEPHONE conference caller．Retail \＄69．95． Free wholesale details：C \＆S ELECTRONICS， 16 Filmore Place，Freeport，NY 11520

FREE giant below－wholesale catalog featur－ ing national \＆imported gift items．Unique opportunity of finding beautiful \＆exotic gifts，novelties，toys．Thousand others．Rush .25 c f or postage．JAAFRI INDUSTRIES， 9807 RE，Brookshire，Downey，CA 90240

FOR SALE

ASCII Teleprinters model 33 receive only $\$ 150$ to $\$ 330$ ．Also 32RO．ATS， 919 Crystal Spring，Pensacola，FL 32505 （904）434－1297 ＂LOW noise resistors－ $1 / 4 \mathrm{~W}, 5 \%$ ，carbon film from $10-3.3 \mathrm{Meg}$ for $31 / 2 \mathrm{c}$ each．Fifty of one value for $\$ 1.25$ ． 10% discount over $\$ 50.75 \mathrm{c}$ postage／handling．Free samples and specifications．COMPONENTS CENTER－ and specifications．COMPONENTS CE
RE，Box 134，New York，NY 10038．＇

Announcing Music Associated＇s new solid state sub－carrier detector for reception of＂Music Only＂and other＂Hidden＂ programs now broadcast on FM．Unit has built in AC power supply，excellent mut－ ing and no cross talk．Use with any FM radio or tuner．A quality product．Wired only（Bakelite case）$\$ 79.95$ ．Special mod－ el for cars（batteries included）$\$ 79.95$ ．

65 GIENWOOD ROAD
UPPER MONTCLAIR，N．J． 07043 Phone：201－744－3387

IN4148 Silicon Signal Switching DiodeTIS97－TIS98 NPN Transistor		$15 / 1.00$
		10／1．00
7400－7401－7403 GATES		$5 / 1.00$
7404－7410－7420 GATES		5／1．00
LM301H／LM301N	IN OP．AMP．	3／1．00
LM309K	$5 \vee 1$ AMP	1.25
LM311H／LM311N	1 N Comparators	1.00
	$1{ }^{2}$ Watt Audio AMP	1.25
LM3900N	Quad AMP DIP	55
LM3905N	Precision Timer	65
LM741CH／LM741CN OP．AMP．		3／1．00
MM5314	24 Pin Digital Clock Chip	7.95
MM5316	40 Pin Alarm Clock Chip	11.95
MM5016H	512 Bit Dynamic Shift Reg．	2.00
MM1103	1024×1 Bit Dynamic RAM	3.95
2519	40×6 Static Shift Register	4.00
2529	240×2 Static Shift Register	5.00
LNEAR		
LM300 Pos	Pos．V Reg To 5	\＄．85
LM301H／N 1mp	1 mproved Op Amp	． 40
L．M302H Vo	Voltage Follower	． 85
LM304H Ne	Negative Voltage Regulator	1.10
LM305H Po	Positive Voltage Regulator	1.00
LM307H／N Op	Op Amp（Super 741）	40
LM308H／N Mi	Micro Power Op Amp	1.15
LM309k 5	$5 \mathrm{Volt} \mathrm{Regulator} \mathrm{/} \mathrm{Amp}$	1.70
LM310H Im	Improved Volt．Follwer Op AmF	1.35
LM311H／N Hi	Hi－performance Volt．Comp．	1.15
LM319H Hi	Hi－Speed Dual Comp．	1.55
LM320K－5V．15V－	－To 3 Neg．Regulator	1.75
LM324N Qu	Quad 741 Op Amp	1.90
LM339 Qu	Quad Comparator	2.35
LM340K－5V－12V－1	V．15V－24 Positive Volt Regulator	2.00
LM370N A	A 6 C－Squelch Amp．	1.55
LM373N AM	AM／FM \＄B Strip	3.30
LM380N 2	2 Watt Audio Power Amp	1.50
LM703H RF	RF／IF Amp	45
LM5558V Du	Dual Op Amp	1.00
LM741H／N Co	Comp．Op Amp	． 40
LM747H／N Dua	Dual Compen．Op Amp	． 90
LM748N Fr	Freq．Adj． 741	． 40
LM1458N De	Dual Comp．Op Amp	． 65
LM3065N T．	T．V．－FM Sound System	． 75
LM3900N Qu	Quad Amp	． 65
LM555N Ti	Timer	1.00
LM565－LM566－LM	LM567 Phase Looked Loops	2.50 ea
LM 7522 Co	Core Memory Sense Amp．	2.50
LM 7524 Co	Core Memory Sense Amp．	1.50
LM7535 Cor	Core Memory Sense Amo．	1.00
LM75451 D	Dual Per！pheral Driver	49
LM75452 Du	Dual Peripheral Driver	． 49
LM75453 D	Dual（LM351）	． 65

Electronics
P．O．Box 822－Belmont，Ca． 91002
phone orders welcome ［415］592－8097

7-SEGMENT Readouts
11 Br buep Ribson

8-TRACK PROFESSIONAL $\$ 15.95$ TAPE TRANSPORT

 FOR HOME USE

 fier (see some of our low-priced anyts). Excellentreplacement unit or youplireplacement unit, or you can design your own high-
quality stereo tape system. It's the type you insert a
cartridge to turn-on deck. of non-stop, non-repeat, stereo. Remove cartridge and
player 'shuts off" eutomginutes player "Bhuts of " automaticaliy. Built-in output and
trols in preamp. Features: 4 PROGRAM INDICATOR
LIGHTS. automatic or manual your car tapes at home. WoWrFriam change, plays
cooled motor which operates off 115 precision fan- Requires
external 12 Vdc supply, for the electronics. With
diagrams.

8 WATT STEREO AUDIO AMP

Quality
Electronic Components MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS

- AXIAL LEAD TYPE -

FIELD EFFECT TRANSISTORS
$\begin{array}{llllllllll}\text { mpF102 } & 10-92 & .44 & 380 & 350 & 2 N 5457 & \text { T0. } 92 & 47 & 420 & 375\end{array}$

NPN DARLINGTON TRANSISTOR
 $1 / 2 \& 1 / 4$ WATT CARBON COMP. RESISTORS

5 each of the 85 standard 10% values ($2.2-22 \mathrm{M}$) $1 / 2 \mathrm{~W}$ Resistors (425 pcs .) Sorted by value $\$ 12 / \mathrm{set} 2-4$ ore $\$ 11 / \mathrm{set} 5.9$ ore $\$ 10 / \mathrm{set}$ 5 each of the 70 standard 10% values ($10-5.6 \mathrm{M}$) $1 / 4 \mathrm{~W}$ Resistors (350 pcs .) Sorted by volue $\$ 12 / \mathrm{set} 2-4$ are $\$ 11 /$ set $5-9$ are $\$ 10 / \mathrm{set}$. Resintors also arcihbler indixidually. in other axartmonts or i" boxes of tote pese per rahlue. 'I 4 are hot mohlard

25 V. DISC CAPS

LINEAR INTEGRATED CIRCUITS

555 Minidip TIMER $\$ 100-1015950 \quad 565$ DIP PLI $5357 \quad 10153000$ 567 Minidip TON DECODER 558 Minidip DUAL OP AMP
 747 Dip OUAL OP AMP $\$ 1.10$ 10/510.50 $\quad 748$ Minidip OP AMP...60 $\quad 10 / 55.50$

DIGITAL TIL

Send for Free Cotalog or Mail Readers Service Card
COD ORDERS ACCEPTED FOR SAME DAY SHIPMENT CALL $218.681-6674$
Orders Less then $\$ 10.00$ add 50 c Service Charge-Others Postpaid

LOOK FOR
THE
DeCEMBER
$-\mathbb{W} A \underline{E}-\mathbb{B} A \underline{E}-$

Circle 107 on reader service card

MAGNUS TONE GENERATOR BOARD These MAGNUS Model 1700 tone generator boards contain 12 separate oscillators, which produce a total of 37 notes. In addition, 3 additional oscillators are for chords, plus a power output stage of about 5 watts. A great basic start for your electronic organ. Boards are new, but as is, since some of the spring contacts may be bent, or a part broken. Board measures $271 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$. Value of parts alone worth many times our price. With data sheet. STOCK NO. J5200 Wt. 2 lbs. $\$ 14.94$ DUAL VOLTAGE, HIGH CURRENT VARIABLE POWER SUPPLY KIT We supply the following parts, to make a dual D.C. power supply with the following ratings: 0 to 42 volts D.C. at 5.0 Amps., and 12 volts D.C. at 5.0 Amps. Switch, line cord, pilot light, transformer, Variable Autotransformer, 2 bridge rectifiers, 2 high ca$\begin{array}{lccc}\text { pacity electrolitic capacitors. (Meters and cabinet not supplied.) } \\ \text { STOCK NO. J5166 } & \text { Parts Kit } & \$ 22.50 & 2 / \$ 39.00\end{array}$

, \quad I RADIATION METER

VICTOREEN Model 710, brand new radiation meter. Sensing element is hermetically sealed ionization chamber. Uses 2 " D " cells, and 2 $221 / 2$ volt hearing aid batteries. 3 scales, reads from .1 to 50 roentgens per hour. Designed by government for CD units. Useful anywhere radiation is present. With manual and instructions.
HI-CURRENT TRANSFORMER
10 volts@10 A., 18 volts@ 6 A. 17 volts @ 6 A. Conservatively rated. Wt. 6 Ibs. $23 / 43 \frac{3}{4} 2 \frac{3}{4} \times 3 \frac{3}{4} \times 3$ STOCK NO. J9906 $\quad \$ 8.95 \quad 2 / \$ 15.00$
Please include sufficient postage. Excess refunded. Send for new revised catalog No. 12. Full of new items. MIN. ORDER $\$ 5.00$

RADIO \& TV tubes 36 c each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, CA 92105
CANADIAN'S free catalog. IC's Semi's, parts. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que. Canada, H3C-1H8

FOR PRINTED CIRCUIT TECHNIQUES ρ THE HOBBYIST cutting cleaning drilling layout SUSPENSION ETCHING
 TRUMBULL
 833 BALRABALRA DR EL CERRITO CA.

EXCEPTIONAL 5 -acre ranch. Lake Conchas, New Mexico. Only $\$ 995$ per acre. Vacation paradise. Good long-term investment. Easy terms. Free brochure. RANCHOS, Box 2006RE, Alameda, CA 94501

LEARN design techniques. Electronics Monthly Newsletter. Digital, linear construction projects, design theory and procedures. Sample copy $\$ 1.00$. VALLEY WEST, Box 2119-A, Sunnyvale, CA 94087

JAPANESE transistors, wholesale prices, free catalog. WEST PACIFIC ELECTRONICS. Box 25837, W. Los Angeles, CA 90025 DIGITAL, Analog Electronics. Theory, design, construction. Wide variety of topics. Lots of circuit ideas. All projects tested. Send $\$ 1.00$ for complete information and sample monthly issue. SYNTEC CORP., P.O. BOX K, Bellingham, WA 98225

TEKTRONIX 321A

 Portable All.Transistorized $3^{\prime \prime}$,6 MHz Triggered Scopes with $10: 1$ Probe
MINIATURE TRIM POTS
$5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$
$\$.75 \mathrm{ea}$.
3/\$2.00
MULTI-TURN TRIM POTS
Similar to Bourns 3010 style
$316 \times 5 / 8 \times 1 / 4$
$50,100,500,2000,5000$
$10,0000 \mathrm{hms}$.
$\$ 1.50 \mathrm{ea}$.
3/\$4.00
PRINTED CIRCUIT BOARD
$41 / 2^{\prime \prime} \times 6 \frac{1}{2} 2^{\prime \prime}$ single sided fiber glass board, Kı" thick, unetched $\$.40$ ea. $\quad 5 / \$ 1.75$

NIXIE TUBES

Similar to Raytheon 8650 tubes, with socket and data sheet $\$ 2.25 \quad 3 / \$ 6.00$ TIS 73 N FET
 2N6027 PROG. UIT

VERIPAX PC BOARD This board is a $1 / 10$ " single sided paper epoxy board, $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ (standard veripax), DRILLED and ETCHED which will hold up to 21 single 14 pin IC's or 8,16 or LSI DIP IC's with busses for power supply connections. Is also etched for 22 pin connec. tor. $\$ 5.25$				
FLV 100 VISIBLE ME. 4 IR LED				
				\$.40
MCD-2 OPTO-ISOL				\$.90
				\$ 60
				\$.40
RED GAP OSL-3 LED			14 PIN DIP SOCKETS	\$. 40
16 PIN DIP SOCKETS $\$.50$				
WATt Zeners				
3.9, 4.7 OR 5.6 V 4 WATT ZENERS				
$3.9,5.6,6.80 \mathrm{OR} 12$				
Silicon Power Rectifiers				
RV	14	3A	12A	504
100	06	11	30	80
200	. 07	16	35	1.15
400	09	20	50	1.40
600	11	25	70	1.80
800	. 15	35	90	2.20
000	20	45	1.10	

REGULATED MODULAR

 POWER SUPPLIES + -15VDC AT 100 ma 115VAC INPUT5VOC AT $1 \mathrm{~A}, 115 \mathrm{VAC}$ INPUT $\$ 19.95$
$\$ 19.95$ IN 4148
$14 / \$ 1.00$
Terms: FOB Cambridge, Mass. Send Check or Money Order. Include Check or Money Order, Includ

FLYBACK checker, scope adaptor. Easy to operate. Removal from circuit not necessary. $\$ 10.95$ post paid. E.P. ELECTRONICS, 17 East El Vado, Tucson, AZ 85706
DIGITAL electronics! Complete schematics, parts lists, theories-Discrete Component Digital Clock, $\$ 3.00$. Increase technical competence, hobby skills-Complete course in Digital Electronics is highly effective, $\$ 10.00$. Free literature. DYNASIGN, Box 60R2, Wayland, MA 01778
AUTORANGING DMM, deluxe vom's, logic probes and more. Lowest prices. Free catalog. ELECTRO INDUSTRIES, 4201 Irving Park Road, Chicago, IL 60641
NEW Canadian Magazine, "Electronics Workshop', $\$ 5.00$ yearly, sample $\$ 1.00$. ETHCO Box $741^{\text {" }} \mathrm{A}$ ", Montreal
SURPRISE! Build inexpensively, the most unusual test instruments, futuristic gadgets using numerical readouts! Catalogue free! GBS, Box 100B, Greenbank, WV 24944 WHOLESALE, scanners, CB/SSB/AM, crystals, directories. Catalog 25c. G-ENTERPRISES, Box 461R, Clearfield, UT 84015. SEMICONDUCTOR and parts catalog. J. \& J. ELECTRONICS, Box 1437, Winnipeg, Manitoba, Canada

Fingertip Tuning

Barlow Wadley XCR-30

GILFER ASSOCIATES, INC.
P. O. Box 239, Park Ridge, NJ 07656

RESISTORS-High stability, low noise carbon film. Free literature. STP, Box 146, Andover, NJ 07821
TROUBLE getting parts for projects? Let us buy them for you. PARTS BUYING SERVICE, Box 1026-R2, Fremont, CA 94538
CALCULATOR owners: Use your $+-\times \div$ calculator to compute square roots, cube roots, trigonometric functions, logarithms, exponentials, and more! Quickly, accurately, easily! Send today for the improved and expanded edition of the first and best calculator manual-now in use throughout the world ... still only $\$ 2.00$ postpaid with unconditional money-back guarantee! MALLMANN OPTICS AND ELECTRONICS, Dept.7B, 836 South 113, West Allis, WI 53214
TWENTY disc, or 10 bar magnets, $\$ 1.00$. MAGNETS, Box 192-E, Randallstown, Md. 21133
BUILD your own 8 k 16 bit computer for less than $\$ 150$ (less memory)! Parts and plans available. Details $\$ 2.00$. HAP, Box 21, Ettrick, VA 23803

INTERNATIONAL ELECTRONICS UNLIMITED

NOW, receive new weekly catalogue of government surplus electronics bargains plus "Buying Surplus," Just $\$ 6.00$ /year. INSIDE SCOOP, 5050 Roseville Rd. \#B-34 North H.ghlands, CA 95660

ELECTRONIC ENGINEERING \& INSTRUCTION

TV tuner repairs-Complete course details, 12 repair tricks. Many plans. Two lessons, all for \$2. Refundable, FRANK BOCEK, Box 3236 (Enterprise), Redding, CA 96001.
SELF-STUDY CB radio repair course. There's money to be made repairing $C B$ radios. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. 11-R, 531 North Ann Arbor, Oklahoma City, OK 73127
DEGREE program in Electronics Engineering. Our 29th year! Free literature. COOK'S INSTITUTE, Dept. 14, Box 20345, Jackson, MS 39209.

WANTED

BASEBALL collectibles. WALTERS, 622 Sunset, Muskegon, MI 49445
QUICK cash . . . for electronic equipment. components, unused tubes. Send list now! BARRY, 512 Broadway, New York, NY 10012, 212 Walker 5-7000
CHIEF technician (German) 15 yrs. experience. Age 32 yrs., English speaking. Fully qualified in color television, radio etc., maintenance, is very keen to obtain an interesting and preferably permanent post starting January 1975. Please write to: GERT WUENSCH, 28 Bremen 44, Bruchweg 19, Germanv.
DECEMBER 1974, Radio-Electronics presents the latest circuits and features to be found in the 1975 lines of color TV sets. For just one, there's an up-to-the-minute report on the Magnavox digital keyboard remote control.

COLUMBIA 4 CHANNEL SO

Solid state SQ 4 channel adapter, 2
amps built in. Decodes 4 channel or synthesizes 4 channel. $\$ 35.00$ AKRFW RADIO S55. UO
For console installation,w/face
plate, no knobs.
Stereo amps for tape or turntable playback.
$\$ 15.00$
Pair of matching speakers w/wfmrs
for above
$\$ 5.00$
PHOTO STITOBE
For use with most Instamatic
cameras. With nicad battery and
built-in charger. Never buy flash
cubes again
$\$ 9.95$
CALCULATOR CHASSIS
Fully assembled pocket calculator
chassis with calculator chip. Uses
LED readouts, not included . 55.00
POWER AMP XFWE 380 WAIt
115 volt input, 64VCT 6 amp output.
\$11.95 each, 2/522, 5/550
BOOKKHLLF SPEAKHRS
Completely finished, $9 \times 12 \times 5$ inches. 16 ohm, with extension cord.
s15/pair
All above material plus shipping. 96
page catalog tree.
JOHN MESHNA JR. PO Box 62
E. Lynn Mass. 01904

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE
CARD NO. PAGE
91 Allison Automotive 107
29 Arrow Fastener Co., Inc. 84
67 Audio Amateur 88
Bell \& Howell Schools 18-21
15,22,23 B \& K Division of Dynascan Corp.32, 78
96 Blonder-TongueCover III
79 Brooks Radio \& TV Corp 99
70 BSR USA Ltd 89
97 Castle TV Tuner
Service, Inc. Cover IV
25 Channellock Inc. 80
9 Channel Master 17
24 CIE, Cleveland Institute of Electronics74-77
24 Continental Specialties Corp. 79
CREI, Division of the McGraw-Hill Continuing Education Center 56-59
6 Crown International 14
18 Data Precision Corp. 71
5 Delta Products, Inc. 13
65 Edlie Electronics 87
93,95 Edmund Scientific Co.107, 11812 EICO,
Electronic Instrument, Inc. 24
77 E \& L Instruments Inc 98
19 Electronics Book Service 72
EMC, Electronic
Measurement Corp. 102
85 Fluke 104
94 Fordham Radio Supply Co. 108
GC Electronics 101
Grantham School
of Electronics 103
GTE Sylvania
Electronic Components 2
92 Harwil Co 107
100 Heath Co 92-97
88 Indiana Home Study Institute 106
8 International Crystal 16
89 Jensen Tool \& Alloy 06
2 Jerrold Electronics 1
27 Judson Research \& Mfg. Co. 83
Kroch's \& Brentno's 83
13 Lafayette Radio Electronics 26
69 Leader 89
80 Lectrotech, Inc 100
90 C. H. Mitchell Co
Electronic Tool Division 107
82 MITS, Micro-Instrumentation Telemetry Systems, Inc. 10272 Mountain West
Alarm Supply Co. 90
71 National Camera Co. 90
National Technical Schools 28-31
NRI Training 8-11

READER SERVICE CARD NO.

PAGE
81 Non-Linear Systems, Inc 100
84 Olson Radio Corp 104
86 Oneida Electronics 105
73 PAIA Electronics 90
28 Projector Recorder Belt Co. 83
1 PTS Electronics Cover II
11 Radio Shack 23
RCA Electronic Components Picture Tubes 25
17 Test Equipment 70
30 RGS Electronics 84
78 Rye Industries 98
61 Scelbi Computer
Consulting, Inc. 84
64 Schober Organ 86
26 Sencore Inc 81
14,20 Shure Bros. 27, 73
62 Southwest Technical Products.. 85
4 Sprague Products Corp. 7
Supreme Publications 86
Sylvania Technical School Home Study Division -41
10 Tab Books 22
74 Technical Documentation 90
7,16 Tektronix, Inc. 15
66 Telematic 88
68 Tri-Star 88
63 Trigger Electronics 86
3 Tuner Service 5
Vintage Radio 106
75,76 Weller-Xcelite
Electronics Division 91
87 Winegard Co. 105
MARKET CENTER
98 Ancrona Corp. 117
ATV Research Corp. 110
99 Babylon Electronics 110
Cornell Electronics 114
Command Productions. 109
101 Delta Electronics 112
102 Digi-Key 112
Gilfer Associates, Inc. 114
Gregory Electronics Corp. 110
GT Products 109
103 International Electronics Unlimited 115
104 James Electronics 109
Lakeside Industries 109
Lesco Electronics 114
105 Meshna Electronics, John Jr. 116
Music Associated 109
Photolume Corp. 109
106 Polypaks 111, 113
Printed Circuits Techniques for the Hobbyist

CH	3
4000AE	\$. 55
4001 AE	. 55
4002AE	60
4004AE	5.90
4006AE	3.90
4007AE	65
4008AE	3.60
4009AE	95
4010AE	1.20
4011 AE	. 55
4012AE	. 55
4013AE	1.40
4014AE	3.80
4015AE	3.80
4016AE	1.15
4017AE	2.95
4018AE	3.20
4019AE	1.30
4020AE	4.20
4021 AE	3.80
4022 AE	2.95
4023AE	. 55
4024AE	2.30
4025AE	. 55
4026AE	9.90
4027 AE	1.85
4028AE	2.95
4029AE	5.40
4030AE	1.25
4035AE	1.80
4037 AE	4.00
4040AE	4.70
4041 AE	3.35
4042AE	2.95
4043AE	2.95
4044AE	2.95
4048AE	1.50
4049AE	1.35
4050AE	1.35
4051 AE	5.40
4056AE	3.50
4060AE	4.95
4069AE	. 90
4076AE	4.30

Schottky TTL

\author{
SN74SOON \$.80 SN74S02N SN74S03N SN74S04N
SN74S08N SN74S08N

SN74SiON SN74S11N SN74S20N SN74S30N SN74S32N SN74S40N SN74S41N SN74S64N SN74S74N SN74S85N SN74S86N | SN74S112N | 2.90 |
| :--- | :--- |
| SN74S113N | | SN74S113N 1.50 SN74S133N SN74S139N SN74S14ON 1.00 SN74S153N $\quad 3.30$ SN74S154N 3.40 $\begin{array}{ll}\text { SN74S160N } & 6.60\end{array}$ SN74S161N 6.60 SN74S174N 4.75 SN74S175N 5.00

SN74S181N $\begin{array}{ll}\text { SN74S181N } & 12.50 \\ \text { SN74S189N } & 5.10\end{array}$ $\begin{array}{ll}\text { SN74S189N } & 5.10 \\ \text { SN74S194N } & 4.40\end{array}$ $\begin{array}{ll}\text { SN74S194N } & 4.40 \\ \text { SN } 74 \mathrm{~S} 195 \mathrm{~N} & 4.40\end{array}$ SN74S251N 4.20 SN74S253N SN74S275N SN74S258N SN74S260N SN74S280N
SN74S289N $93 S 10 \quad 6.80$ $93 S 16 \quad 6.80$ $\begin{array}{ll}93 S 21 & 3.50 \\ 93 S 22 & 3.20\end{array}$ $93 S 48 \quad 3.70$
}

HIGH SPEEDTTL

LIVE IN THE WORLD OF TOMORROW ...TODAY!

And our free 164 PAgE CATALOG is packed with exciting and unusual values in ecological and physical science items - plus 4,500 finds for fun, study or profit... for every member of the family.

- a betTER LIFE STARTS HERE

TAKE TEMPERATURES IN SECONDS
Edmund's new electronic oral the mometer obsoletes glass mercury type. Seconas instead of minutes more accurate, much easier to read Put disposable cover (supply incl.) on flexible probe, place under tongue, push button, dial meter center, read temp fast in F .0 \& $\mathrm{C} .0^{\circ} .92-106^{\circ} \mathrm{F}$. $\left(33-41^{\circ} \mathrm{C}\right.$.) in $1 / 0^{\circ}$ increments, $97-101^{\circ} \mathrm{F}$. to $1 / 10^{\circ}$. Safe, hygienic, no squinting. Compact metal case fits in doctors', nurses' shirt pocket. Incis. 9 v trans. batt., instrs.
Stock No. 42,210 EH
. $\$ 25.00 \mathrm{Ppd}$.
3.CHANNEL

COLOR ORGAN KIT
Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "lows"-reds, "mid des" greens, "highs"-blues. Just connect hi-t. rado, power lamp etc. plug ea. lamp string into own channel (max. 300w ea.) Kit feaures 3 neon indicators, color intensity controls, controlled ndivid SCR circuits; isolation transformer; custom plastic housing; instructions
Stock No. 41,831 EH

PRO ELECTRONIC SOUND CATCHER
Parabolic mike $w / 183 / 4^{\prime \prime}$ reflecting shield \& 2 I.C.'s in amplifier magnities signals 100 X that of omni-directional mikes. Catch a songbird $1 / 2$ mile off; QB's huddle strategy; sounds

never before heard. Super directivity

gives highest signal to noise ratio poss. Safe: auto. cuts off ear damaging noises. Earphones, tape recorder output, tripod socket. Req. two $9 v$ trans. batt. (not incl).
No. 1649 EH ($51 / 2$ LB.)
$\$ 299.00$ Ppd.
BIG EAR "TOY" MOOEL $=80,176 \mathrm{EH}$ $\$ 32.25 \mathrm{Ppd}$.

LIE DETECTOR TYPE METER

Amazing Emotion Meter reveals hid den likes, dislikes. Easy to use; sen sitive, accurate. Measures changes in body resistance caused by changes in emotional state. Needle movement whether favorable or unfavorable)
 Effectiveness depends on questions Effecivenes and interpretation. Unique 10 -oz. set ideal for entertainment and education-parin, scier bert (not included) Instructions. Requires $9 V$ uctions.
No. 42,194 EH ($2^{7} / 8 \times 4 \times 13 / 4^{4}$)
$\$ 19.95 \mathrm{Ppa}$,

GET A CHARGE
FROM THE SUN!
Our 12V Solar Battery Charger allows direct conversion oflight-to-electricity. Compact panel put on a boat can automatically charge its 12 V battery over entire daylite period. Use any where for a trickle charge. Big value. it comprises $301 \% \mathrm{~V}$ silicon solar cells in series w/diode. No. 71.971 EH (AB. 30 W-HRS./WK.)
 \$89.95 Ppd. $9 \times 18^{\prime \prime}$ HI CURRENT MOOEL ($6 \mathrm{~W}, 12 \mathrm{~V}, 500 \mathrm{~mA}$) \$420.00 Pa No. 72.010 EH (AB. 150 W-HRS./WK.) $\$ 420.00 \mathrm{Ppd}$ Ex6"LO VOLTAGE MODEL ($1.5 \mathrm{~V}, .38 \mathrm{~W}, 250 \mathrm{~mA}$) No. 42,172 EH \$49.95 Ppd

LOW COST

7X INFRA-RED VIEWER
New, great buy for infra-red crime detection surveillance, security sys tem alignment, I. R. detection, laser checking. nite wild life study, any work requiring I. R. detection and conversion to visible spectrum. Self contained scope w/everything but I.R. light source works in any I.R. lit area: 6 V or 12 V power, 6032 I.R. converter tube, $f / 4.5$ objective lens, adjustable triplet eyepiece, shockproof housing. See bright in dark! Under 4 lb ., comparable to others at $\$ 350$ \& up
No. 1648 EH ($11 \times 141 / 4 \times 3^{\prime \prime}$)

For greater relaxation, concentration, listen to your Alpha-Theta brain waves. Uitra-sensitive electrode head band slips on/off in seconds-elimi Atch'd to amplifier filters brain waves, signals beep for ea Alpha waves, signals beep for ea. Alpha button simulates Alpha sound; audio \& visual (L.E.D.) feedback Reliable, easy-to-use unit-comparable to costlier models. Com pletely safe. Comprehensive instruction booklet.
No. 1635 EH ($8 \times 3 \times 4$ "; 24 oz.)
\$134.50 Ppd.
LOW COST "STARTER" UNIT
No. $71,809 \mathrm{EH}$

NEW! KIRLIAN PHOTOGRAPHY KIT! Experiment in the fascinating new field of "Kirlian electrophotography" -images obtained on film without camera or lens by direct recording of electric charge transmitted by animate \& inanimate objects. Each aura" differs-animate aura said to change corresconding to physical changes. Kit incls portable darkroom, double transformer isolated from power source; instructions
No. 71,938 EH
"HIGH VOLTAGE PHOTOGRAPHY" by H. S. Dakin

3" ASTRONOMICAL REFLECTING TELESCOPE
See stars, moon, planets close-up! 30 to 90 X . Famous Mt. Palomar Type. Aluminized \& overcoated $3^{\prime \prime}$ diameter f/10 primary mirror, ventilated cell. PVC tube equatorial mount. Durable den, Bariow lens to triple power $3 X$ finder telescopes, hardwood tripod FREE: "STAR CHART", "HOW TO USE" book. No. 85,240 EH
$\$ 49.95$ Ppd.
DELUXE 3" REFLECTOR TELESCOPE \#80,162 EH $\$ 79.95$ Ppd. 41/4" REFLECTOR ($45 \times$ to 135X) $\quad \# 85,105$ EH $\ldots . . . \$ 149.50 \mathrm{FOB}$ $6^{\prime \prime}$ REFLECTOR (48 X to 360 X) $\# 85,187 \mathrm{EH}$.... $\$ 249.50 \mathrm{FOB}$

Think of him as a 250 lb . antenna.

We know you don't have a 250 lb antenna

But when the winds get ro g h you need every bit of turning power an antenna rotor can muster The new. super poner Blonder-Tongue ULTRAMATIC 1000 gets the antemna to the? precise point for each statio 1 consistently, accurately

And. by doing this it gives the best reception by assuring ghost-tree color reception and minimuin multipath ster 20 distortion

These exclusive features r make
it all possible
Highest starting and runn ng torque (175 to 200 inch lbs.) motor uses tiltered DC pcwer supply

Accurate 2 -degree reseting -push-to-start silent contro unique direction sensing circuit utilizing five wire control cable difterential servo sensing ainpIffier with solid-state switching. hermetically-sealed powe' relay automatically disconnects rotor when not in use

Rellability - weatherproof terminals use foam-filled ped: long-lite. self-lubricated Celcon gears: bronze worm gear and high strength sintered steel ring gear lock antenna in positic ? corrosion-proof cast alurrinum housing: fully protected agansi lighting and power surges: inbreakable plastic control box

Install the ULTRAMATIC 1000 it performs well under the roost adverse conditions and v stand up for years and vee's

Blonder-Tongue Labor atories. Inc. One Jake Brown Roac: Old Bridge. N J 08857

SUBBER TV Service Instruments for signal circuit analyzing.

When Castle introduced the TV Tuner SUBBER*analyzing instrument a couple of years ago it became the first practical way to easily test the VHF tuner, UHF tuner and i.f. amplifier system of any TV receiver. Being lightweight, self contained and battery powered the TV Tuner SUBBER *Mk. IV is the first such instrument which may be carried on service calls and used with ANY color or black and white TV receiver ... at $\$ 45.95$ for the battery powered Mk. IV, or $\$ 54.95$ for the a.c. plus battery powered Mk. IV-A the instruments have been known to pay for themselves in TIMESAVING in the first two weeks of use!

Now we have introduced the Mk. V Master SUBBER*, an instrument which is absolutely unique . . . there is nothing else like it anywhere! It is completely portable and battery powered, practically foolproof in it's simplicity of operation when testing ALL the signal stages of any color or black and white TV receiver. The substitution signals available allow tests of the following stages: VHF tuner, UHF tuner, each video i.f. amplifier, video detectors, video amplifiers, 4.5 MHz sound i.f. amplifiers, sound limiter, sound detector and audio amplifier. It includes a signal level meter for testing the antenna signal. Inbuilt telescopic antenna makes the meter adaptable for true field strength measurements. Inbuilt monitor loudspeaker ensures foolproof substitution tests . . . every time!

At $\$ 169.95$ the Master SUBBER^{*} instrument is the best bargain in an analyzer that has ever been available. It will save oodles of time in the hands of a professional troubleshooter ... and help advance the novice to professional status.

All SUBBER*instruments come complete with batteries, connecting cables and comprehensive instruction manual. The Master SUBBER* and Mk. IV-A TV Tuner SUBBER ${ }^{*}$ come complete with wall plug-in transformer for 120 vac 60 Hz operation.

As an added bonus, all SUBBER* instruments enable use of the high speed agc system analyzing procedure invented by Castle . . . the first practical method for a nalyzing agc system defects without confusion.
*A trademark of Castle TV Tuner Service, Inc.

These instruments boast the extra features of all Castle products - advanced technology - modern styling - and they work!

If you need to save some analyzing time . . . you need a SUBBER* instrument!

See your stocking distributor . . . or write for more details and complete specifications.

CASTLE TV TUNER SERVICE, INC.
5715 N. Western Ave., Chicago, Illinois 60645 Phone: (312) 561 1-6354
In Canada: ten Finkler Ltd., Ontario

[^0]: NR告

 NRI SCHOOLS
 McGraw-Hill Continuing Education Certer 3939 Wisconsin Avenue, Washington, D.C. 20016

[^1]: Accredited Member, National Home Study Council

[^2]: A PROFIT MAKER WITH
 PATENT APPLIED FOR！

 ONLY \＄495

